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Chapter 1

Introduction

There is, as shown in Fig. 1.1, a circular waveguide which is closed at one end.
Two symmetrically placed apertures in the lateral wall of this waveguide are
backed by rectangular waveguides of identical dimensions. The dimensions of
the waveguides are such that only the TE11 and TMo1 modes can propagate
in the circular waveguide and that only the TE10 mode can propagate in
the rectangular waveguides. The problem is, as stated in [1, Chapter 1], to
find out how much of the power of an incident TMo1 wave in the circular
waveguide is reflected in the circular waveguide and how much of this power
is transmitted into the rectangular waveguides.

In this report, the analytical results of [1] for this problem are manipulated
into expressions suitable for evaluation by means of a digital computer. These
analytical results are not derived here; they are merely referred to. For this
reason, the reader of this report should obtain a copy of reference [1].

A computer program was written in FORTRAN. Some numerical re-
sults obiained by using this computer program are presented. The computer
program will be described and listed in a forthcoming report.

As is shown in Fig. 1.2, the interiors of the left-hand rectangular wave-
guide, the right-hand rectangular waveguide, and the circular waveguide are
called regions 1, 2, and 3, respectively. The electromagnetic field in region 1 is
radiated by M (l). The field in region 2 is radiated by 0 2). The field in region
3 is radiated by the combination of jmP, _M(i) and -- 2 ) . The magnetic
currents in Fig. 1.2 are supposed to be loacated right on (infinitesimal dis-
tances from either side) of the closing conductors. The finite displacement
of these magnetic currents from the closing conductors in Fig. 1.2 is only for
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the purpose of illustration. The magnetic currents .1 1 ) and M(2) are given
by [1, eqs. (2.11) and (2.12)] in which the V's are the elements of the column
vector on the left-hand side of [1, eq. (2.22)]. In [1, eq. (2.22)], Y', Y 2 , and
Y' are the admittance matrices for regions 1, 2, and 3, respectively. The
column vector on the right-hand side of [1, eq. (2.22)] is called the excitation
vector. The matrices Y' and y 2 are treated in Chapter 2, the matrix Y3 is
treated in Chapter 3, and the excitation vector is treated in Chapter 4.

After solving [1, eq. (2.22)] for the V's which determine M( 1) and M1 2)

according to [1, eqs. (2.11) and (2.12)], we find the electromagnetic fields in
regions 1, 2, and 3. Expressions for the fields in regions 1 and 2 are obtained
in Chapter 5. The field in region 3 due to the combination of -M I' ) and

-M( 2) is considered in Chapter 6. An expression is obtained for this field
below the apertures where z < -c/2. Expressions are also obtained for this
field in the apertures. In Chapter 7, numerical results are presented for the
power transmitted into the rectangular waveguides, the power reflected back
into the circular waveguide, and the magnitudes of the 6- and z-components
of the electric field in one of the apertures when a TEO, wave is incident
in the circular waveguide and when the loads Z, and Z2 that terminate the
rectangular waveguides are both matched loads.

i IT, 1TE' ,12T.11 jjTEiIn Appendix A, the expansion functions n -[1Mn -r1T .. ,I E

are ordered so that each one of them can be identified by means of a sin-
gle positive integer rather than the attached combination of subscripts and
superscripts. In Appendix B, a numerical procedure for obtaining roots of
Bessel functions and their derivatives is described. Heretofore, the excita-
tion has simply been a z-traveling TM0I wave in the circular waveguide. In
Appendix C, the response due to this excitation is used to find the response
due to excitation by a transverse sheet of TMI electric current between two
impedance loads as shown in Fig. C.1.
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Chapter 2

The Admittance Matrices for
the Rectangular Waveguides

The admittance matrice for region 1, the left-hand rectangular waveguide in
Fig. 1.2, is Y' given by [1, eq. (2.25)] where the Y's on the right-hand side of
[1, eq. (2.25)] are approximated by Y's given by [1, eqs. (3.44)-(3.47)]. The
superscripts on the Y's are the same as those on the Y's.

For convenience, [1, eqs. (3.45) and (3.46)] are repeated:

gi1TE,1iTM 0 (2.1)

i IITMATE 0 O. (2.2)

In [1, eqs. (3.44) and (3.47)]., we have [1, eq. (A.12)]

: J 3 pq, kpq < k

V7 kpq -k kpq > k

where k = 7fjiT in which w is the angular frequency. Moreover. P and ( are.
respectively, the permeability and permittivity of the medium in regions 1,
2, and 3. In (2.3),

kpq = + (2.4)

f~pq =Vk 2~kq* (2.5)

5



There is a correspondence between each pair of integers (p.q) used in [1,
eqs. (3.44) and (3.47)] and the subscript j in [1, eqs. (3.44) and (3.47)].
This correspondence is described in Appendix A. If (p,q) = (1,0), then,
because the TE10 mode propagates in the rectangular waveguide, k > kj0
and substitution of (2.3) into [1, eq. (3.47)] and subsequent multiplication by

-jr 1 where q7 gives

• 1 ,ITE,ITE - .IO(CO 01OXI +jZ 1 0yiE sin j31ox 1 )
-J k(j sin 0ox, + ZYTE COS 3oXi)

(p,q) = (1,0) (2.6)

where

x, = Li - xo (2.7)

= a sin (2.8)
* b

= sin - i b (2.9)

1lE is the characteristic admittance of the TEio mode in the rectangular

waveguide [1, eq. (A.25)]

yT E = 010. (2.10)kr/ '

and 6ij is the Kronecker delta function given by

1ij = 1, 2- j (2.11)
0, 2 I .j

The identities [2, formulas 67i 6 and 654.7] were used to obtain (2.6). In
(2.6), the subscript j is not to be confused with the other j's. Each of
these other j's is v 2 - . Because the TEpq mode does not propagate in he
rectangular waveguide when (p,q) $ (1,0), Ypq is real when (p,q) $ (1,u)
and, from [1, eq. (3.47)],

• gI,1TE,1TE 'tq .

7r/7iT T --- ' - u, (p,q) 7 (1,0). (2.12)ij k

The factor -j on the left-hand side of (2.12) has rendered the right-hand
side of (2.12) real. The factor 7 on the left-hand sides of (2.6) and (2.12) has

6



rendered the right-hand sides of (2.6) and (2.12) independent of q7. Multi-
plication of [1, eq. (3.44)] by -j 1 gives

• f 1,1TM,1TM k
-7 V/lTj = - -j. (2.13)

Ipq

Because all the TM modes in the .ctangular waveguide are evanescent, Ypq

is real in (2.13) so that the right-hand side of (2.13) is real.
The admittance matrix for region 2, the right-hand rectangular waveguide

in Fig. 1.2, is Y2 given by [1, eq. (2.27)] where the Y's on the right-hand side
are approximated by Y's given by [1, eqs. (3.49)-(3.52)]. Similar to (2.1),
(2.2), (2.6), (2.7), (2.12), and (2.13), we have

i 2,2TE,2TM 0 (2.14)

=2,2TM 0 (2.15)
_ -,,22TE,2TE -/31o(cos 31oX 2 + jZ 2 y1 E sinlox2)

- k(j sinIoX2 + Z 2YTooEcosfloX 2 )

(p,q) = (1,0) (2.16)
X2 =L2 - Xo (2.17)

• j,2,2TE,2TE p i,(.8
-/J2= - _ k (p,q) 5 (1,0) (2.18)

• 7z2,2TM,2TM k
-= -'5 . (2.19)

(pq
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Chapter 3

The Admittance Matrix for
the Circular Waveguide

The admittance matrix for region 3, the circular waveguide in Fig. 1.2, is Y3

given by [1, eq. (2.29)] where the Y's on the right-hand side of [1, eq. (2.29)]
are given by [1, eqs. (4.93), (4.111), (4.112), and (4.113)] in which T, SI, S 2,
S 3, S 4, and S5 are given by (1, eqs. (4.94)-(4.99)]. The previously mentioned
equations for the Y's are recast as

3 clTA - E T{VS 1 + 1Y9 S3 - 1'VloS4 - 'V1lS} (3.1)

r=0 s=1-jiy3,aTE -TM - Z
-.y ?jkET = - WsS3 - WVI,4 + Wo51 } (3.2)

r=O s=1

-,y 3 'TE=yTE - + {w,, - w 10 3 + V89 4 - wS} (3.4)

r=O s=1

where

= 27r ,/-,,6_l% (3.5)
T = ka0-,nb)(kpqb) 16

8 =q c(3.6)

IV9 = mq (3.7)

8



11o = np (3.8)

=VI m PC (3.9)b

S,1 = (zI - Z 2  (3.10)

5 3 = z3 0,yl (3.11)

5 4 = Z4€ a13  (3.12)

5 = Z 4 (3.13)
C l = (_l)c Cffl (3.14)

ay2 = €Oct2 (3.15)

S= (_1)--3 (3.16)
01,y = ( -- 1 + t-f4  

(3.17)

(ka)2 (k T )2Jr 2 (k -a)( "r

z= x=(J7 +-(x 3 ) aZ () (3.18)X2 J2+,X.,

r 2 J2 (k TE a) (2)

Z2 (krs 2  (3.19)
(/ - r2): (4 8 )2s )J2 (Xr.

(TEa )2 rJ2(k TE a)( 3 ) (sin (32(k Ea)rJ-(k a)4 (3.20)/2,- r2)J,(X4) 'ko I
.rTE a )2 r .r kTE a -(4) (sin~o

_(k,,Ea)rJ,(k,,a)zS (sn,\

- r ()J 2 (x ') rs ( r) (3.22)
1 2 

- 2I

4z(1)(;() - (3.23)
c 2 T 1 a

(2) = 4Z(2)yTEa (3.24)

(3) 4z(3 ) (3.25)

4 (3.26)

, 2 E . (3.27)

9



In (3.5)-(3.9), j determines p and q in the manner described in Appendix
A; i determines m and n in the same manner. In obtaining (3.1)-(3.4), we
started the index r of summation in [1, eqs. (4.96) and (4.97)] at 0 instead
of 1. This was possible because the r = 0 terms so introduced are zero. We
multiplied [1, eq. (4.93)] by /fm,,nfpq/16, [1, eq. (4.111)] by -VfE/4, and

[1, eq. (4.112)] by VEmc/4. This was possible because none of the indices
m, n, p, and q which appear in these multipliers is ever zero.

3.1 Evaluation of the O's in (3.10)-(3.13)

The 6's in (3.10)-(3.13) are given by (3.14)-(3.17). Substitution of [1,
eqs. (E.31)-(E.34)] into (3.14)-(3.17) gives

o, = ()¢-x-, (2)02y1 _ -(1)02Y2} (3.28)

oc-Y2 = o~oa12 + 01)0c1-Y1 (3.29)
ck3 = €(4)Ma-y - €( 3 )oay-f2 (3.30)

cr4= (1~ {(4)02-y2 + 0(3J0a2-1 (3.31)

For a = , we have [1, eqs. (E.46)-(E.49)]

o- 1 = (m), -1= a (3.32)

€a2-y, = 0(3), = a (3.33)

c1-2 = €(2), -y=Q (3.34)
2-y2 = 04), C , . (3.35)

For y $ a, we have [1, eqs. (E.53)-(E.56)]

¢(bI-l = (_1)i { ) sin r b _ 0)cos-r , _Y $ a (3.36)

o 2 -y1 = ( _ ~ { ( )s in x 0  (3) C sr b am = ) sin b  cs- 7 54a (3.37)270 X0

ootl-,2 = (_1)r 0(2) COS __ + 0()sin - ,b (k t (3.38)
M X,0 X0

e 2-2 = (_1)04) Cos -- +,6( sin -- ' a. (

170 270

10



In (3.28)-(3.31), the Op's are given by [1, eqs. (E.23)-(E.26)]

0()=b Jsin A- sin A+ 1 3.0
- 2xo A- A +  (3.40)

0(2) = b sin 2 (A- /2) + sin 2(A+/2) (3.41)

- 2xo (A-/2) + (A+/2)

0 ) b fsinA- sinA + 1
- 2X A- + f (3.43)

where

A + = Pr + rb (3.44)
x0
rb

A- = pir - -. (3.45)
xo

The O's in (3.36)-(3.39) are given by the right-hand sides of (3.40)-(3.43)
with A+ and A- replaced by the right-hand sides of (3.44) and (3.45) with

p replaced by m.

3.2 Evaluation of the z's in (3.10)-(3.13)

The z's in (3.10)-(3.13) are given by (3.18)-(3.22). In (3.18)-(3.22), Er is
Neumann's number given by [1, eq. (B.9)]

r 2, r=,2,... ' (3.46)

Jr is the Bessel function of the first kind of order r, xr, is the sth root of Jr,
J,' is the derivative of Jr with respect to its argument, and x' is the sth root
of Jr. The roots {x,, r = s = 1,2,...} and {x'., r = 1,2,* . are ordered
such that

0 < X,1 < Xr2 < X,3"'".(3.47)

0 xrl < X < Xr3"' (3.48)

11



Still in (3.1S)-(3.22), we have [1, eqs. (B.7) and (B.41)]

kTM=- (3.49)
a

kTE = 43 (3.50)
a

Since J7 (xr,) = 0, we have [3, formula 9.1.27]
J;(X,) = -Jr+I(Xr). (3.51)

Substitution of (3.49)-(3.51) into (3.18)-(3.22) yields

=(ka)
2 ' 2' (3.52)

r22(2) (3.53)
2 2 - 2 r 2

Xrs -
rxi2 (3) Ign

r3 . = (3.54)

Z4 = (3.55), - r2. \ 0 I
Xrs 0

, j (5)

5 -e 2) si r22o (3.56)

The i's in (3.52)-(3.56) are given by (3.23)-(3.27) where [1, eqs. (B.24)

and (B.53)]

Ta { TMa ,X. < ka (3.57)

= _(ka)2 xrs > ka

T EE
{ jE rsa X r, < ka (3 '-58)'

"VX _ , > ka

where

J aTM = V(ka)2 x, (3.59)

Ts Ea = /(ka) 2 - 4. (3.60)

12



From [1, eqs. (F.60), (F.61), (F.76), (F.81), (F.118), and (F.119)],

= ( + F (3.61)

-(2) - J (DTEGTE + c2FTE) (3.62)

_(3) - 1 (D0(3)G (3) +,,2 Fr(3)) (3.63)
4

- (D ) ( 4) + C2 F (4) (3.64)

(5) - Z L * (D (3G 4 + C2 F(5)) (3.65)
(kTE) 2 '4

where the D's, the G's, the F's, and z.E are dealt with in [1, Appendix F].
In view of [1, eq. (F.83)] and (3.50), substitution of (3.61)-(3.65) into (3.23)-
(3.27) gives

(,1 - Aj (F T  +n (3.66)

7TAa
-(2 j TE 6 TET),E

"(2) = j (FT + GqDE) + qTEa (3.67)

F TE(3) (3.68)

-(4) = _ (F(4) + a(4)DTE) (3.69)

TE (F(5) + 6(4j)( (3 ))
-(5) _ 4azT + jq n(3.70)

c2 -,2 ,TEaC 
W.

where

ds = G6 =TM,TE (3.71)

= D, 6 =TMTE (3.72)c

(3) - (3.73)n c

d(4)= - .G(4) (3.74)
c

13



3.2.1 The T-M Quantity .(1) for xrs < ka

With xs < ka, substitution of (3.57) into (3.66) gives

FTAI + bTTM
__ q n4-1Ma (3.75)

Substituting [1, eq. (F.87)] into (3.71), we obtain

sin(q5- c) cos(l L q) - 2 sin 2  sin(06 L+)

9 qS sin2 ~~(q6 +c) i 3 8L) (.6

sin(q5+c) cos( L+) + 2 s ++c s "3)+ csn ( -7 (3.76)
+ q6+c

where 6 may be either TM or TE and where [1, eqs. (F.11), (F.23), and
(F.24)]

c
L + = L3 + - (3.77)

2
q8-c =qr 0c (3.78)
q c = qr + ,8 c. (3.79)

Using (3.77)-(3.79) and [2, formulas 403.02, 401.03, and 401.04], we reduce
(3.76) to

q si5( +) q 2cos (0,,L 3 - ) (3.80)q: q-c 2so

Substituting [1, eq. (F.85)] into (3.72), we obtain

sin(n 5-c) - 2 sin 2 ( -- ) + sin(n 6+c) + 2 sin 2 (n){ - n6-c + n., + C (6c

(3.81)

14



where n-c and n6+c are given by (3.78) and (3.79) with q replaced by n. In
the same manner as we reduced (3.76) to (3.80), we can reduce (3.81) to

{sin+ + sin/
fY L+ (_ n -

-n 7z 9

{sin (i3,,L 3 - -i) + j cos (168 L3 -n (3.82)

As for the quantity FT"' in (3.75), we have (1, eq. (F.79)]

F = -f(n 8-c, -q 8-c) + f(n6+cq8-c)
-f(n'-c, q'+c) + f(n 6+c, -qS+c) (3.83)

where 6 may be either TM or TE and [1, eq. (F.97)]

si___ X x + Y : 0
YX 1Y1v > 1

(-1)'siny J X+Y 0
f(X-Y) - -- Iyl - 2 (3.84)

y-sin y X + y =0
- 2- ' yj > 0.1

y a yS 3 +, X + Y = 0y , 7, ' . I'jI< 0.'

.3! 5! 7! 'Y < 0-1~

where I is the integer that satisfies

x + y= Ir. (3.85)

When x,, < ka, the Till quantity &(') is now given by (3.75) in which
f3T"a ,TM hTM and FT M are given by (3.59), (3.80), (3.82) and (3.83),
respectively.

3.2.2 The TM1 Quantity 51) for x, > ka

When x,, > ka, we proceed to evaluate expression (3.66) for i(1) which con-
tains the quantities ,,v .7 n , and F . These quantities with the super-
script TM replaced by 6 are, according to (3.71), (3.72), and [1, eqs. (F.104),
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(F.100), (F.101), and (F.107)-(F.109)], given by

=q {sinh(gL+) - (-l)qsinh (g(L+ - c))} (3.86)
= " + ( sinh ( ) , n even)(.7

-jcL&9(-3c) 2 (3.87)
n 23ce- cosh (2) , n oddS(-)Incq sinh(gc) , qen

FS (-1)c,,cq sinh(gc) - c, q =n j 0 (3.88)
4{sinh(gc) - gc}1 (gc),

where

9 = rs (3.89)
2n rs (3.90)

(nw,)I + (-'$c) 2 (

Furthermore, cq is the right-hand side of (3.90) with n replaced by q. The
truncated series approximation inherent in [1, eq. (F.110)] is introduced later
in this section. The case where Xr, = ka is not allowed because, if xra = ka,
then, according to (3.57), -Tr a would be zero so that division by -,Tf a in
(3.66) would be impossible.

Substituting (3.77) into (3.86) and using [2, formulas 651.06 and 651.07],
we obtain

qsinh(gc/2) cs~L qee,'q= 2c snh(gL3 )cosh(gc/2) , q odd (3.91)

Substitution of (3.77) into (3.87) gives

-jCeqL3 - sinh(gc/2) , n even (392)
n 2 c,, cosh(gc/2) , n odd "

Combining (3.88), (3.91), and (3.92) and using [2, formulas 652.12 and 654.51
to simplify the result, we obtain

.(FS± +c,,+c{1 q =n: O } (3.93)

q , 0 ,otherwise
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where

n even
CnCqZee , q even

q~n
n even

CnCqZee q =n 0

Cnq = CnCq o q nd (3.94)n odd
CnCqZoe ' q even

CnCqZoe I { odd

Cn~~~q odd,{n odd
c,-cqzoo I q odd

In (3.94),

Ze- =- f-, 3  L - e-2 sinh Lc (3.95)

Zo = Zee + gc (3.96)

Zoe = -e - 2gL 3 sinhgc (3.97)
z o 9 { -2 g L 3 c s g C _ .}g c

ZOO 2 { e cosh -62 coshLg (3.98)2 1 2

The value of sinh (gc/2) is excessively large when gc/2 is only moderately
large. Moreover, z, approaches zero more rapidly than gc as gc approaches
zero. To avoid computational difficulties, we replace (3.95)-(3.98) by

Se-gc -e- 2gL3 - 1 + {eg(2L3-c) + e -9(2L3+C)} , c>1
Zee j{e- L3 - i (3.99)e - L 3 sinhi 2- e-2 ih2cg

C-7 -C-c - 1 + {e-(2L-c) + e-(2L3+ )} + gc, gc > I

2{e -  sinh 2 - e - 12 sinhi q +gc 0.01 < gc <1

2{ (e sinh Zo + e s2 nL3 Si sinh L (3.100)

3- +! 7)} , gC < 0.01
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S{ 2 gc> > (3.101)

o -2L 3  + 1 e -9(2L3- c ) ± e(2L3+ C 1
2-  L  e e cj {e 2 cs_ }cos 2,gc (3.102)

We used the approximation [2, formula 657.1]

X3 X X(

sinhx- x = + +7 (3.103)
3! 5! 7!

to obtain zo of (3.100) for gc < 0.01. From Fig. 1.2. L3 > c/2 so that all
the arguments of the exponentials in (3.99)-(3.102) are less than or equal

to zero. The exponentials in (3.99)-(3.102) will be excessively small when
gL 3 is only moderately large. However, this will not cause any difficulty if
we use a computing system which treats an underflow by setting the number

equal to zero and proceeding without an error message. The right-hand
side of (3.94) cannot be evaluated when gc = 0 and when n = 0 or q = 0

because c, = 2/(gc) when it = 0 and c, = 2/(gc) when q = 0. However, the

right-hand side of (3.94) remains finite as gc approaches zero when n = 0 or
q=O.

When x, > ka, the T.l1 quantity -(1) is now given by (3.66) in which

-fsTa and j(FT.l + dTlffJT ) are given by (3.57) and (3.93). respectively.
In (3.93), c, and c, are given by (3.90) and (3.94), respectively. In (3.94),
z el, o , and z0o are given by (3.99)-(3.102) where g is given by (3.89).

3.2.3 The TE Quantities (2) ) for x < k

When x' < ka, yTE a is given by (3.58) so that expressions (3.67)-(3.70) for
(2)_ (5) become

-(2 = TE TEF- TE)3T

= - - + n.,EI.,E) 3 T a (3.104)

T(3) = -
3 + aTEb(3) (3.105)(3 __F(3 + q --

(4) (4) + ,(4)bTE) (3.106)

F(5 ) + ( (4)b)(3) 2a n=q
(5) - 3TrEa + cx 5  

(3.107)
18,0otherwise



We obtained (3.107) by substituting [1, eq. (F.121)] for TEIn(310),TE (, TE f rE, TE
In (3.104), 3,,a,,.% , Dq , , and F are given by (3.60), (3.80), (3.82),

and (3.83), respectively. As for 0(4) in (3.106) and (3.107), substitution of
[1, eq. (F.122)] into (3.74) gives

sin(q TE-C)cos((OE L') - 2 sin 2 (q)c sin(3T EL + )

q qTE-c

sin(qTE+C) cos( TE L') + 2 sin 2 (sin(3E L+)

qTE+c (3.108)

Note that tl!H right-hand side of (3.108) is that of (3.76) with 8 replaced by
TE and with the sign of the coefficient of 1/(qS+c) changed. If we recall also
that (:3.76) reduced to (3.80), we see that (3.108) reduces to

si 11__ _ (q__ _ 1 TEL
0q+c ± (-1)" s COs(3T- ). (3.109)

{ q5I 7q E + C ) ( T ) co c rs 3

As for D$3  in (:3.105) ind (3.107), substitution of [1, eq. (F.S6)] into (3.73)
gives

?nTE - c nTE+c

- r{sTE + (3 ,0)

The right-hand side of (3.110) is tlt of (3.SI) with S replaced by TE and
with the sign of the coefficient of /(n'-c) clauged; recalling that (3.81)
reduced to (3.82), we see that (3.110) reduces to

sin (nTE+c) 
sin(n TE-)(3)n = ) + ( _,n
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*s +si ( 3 E3 ± cE (3.111)
.k/ ( 3 TELjCs L

The F's in (3.105)-(3.107) are given by [1, eqs. (F.84), (F.123), and (F.124)]

F (3) = f(nTE-c, -qTE-c) + f(n TE+ c, qTE-c)

+f(n TE-c, qTE+c) + f(nTE+c, -qTE+c) (3.112)

F (4) = -f(nTE-c, -qTE-c) + f(nTE+ c, qTE-c)

+f(nTE-c, qTE+c) - f(TE+ c, -qTE+c) (3.113)

F(5) = f(nTE-c, -qTE-c) + f(n TE+ c, qTE- c)

-f(nTE-c, qTE+c) - f(n TE+c, -qTE+c) (3.114)

where f is given by (3.84).

3.2.4 The TE Quantities (2)-§5) for x' > ka

When x', > ka, we proceed to evaluate expressions (3.67)-(3.70) for Z(2) _
_ 5). Expression (3.67) is

-(2) = j(FTE + (,TETE.,TE (3.115)
" +q n ,ars

TE - -TE +,TEbITE)

where JrE a is given by (3.58). In (3.115), j(FE + .,q ,n,,) is given by
the right-hand side of (3.93) with 6 replaced by TE, that is, with g (which
appears in the z's of (3.95)-(3.98)) given by

TE (3.116)

with c,, given by

= )2E c (3.117)
()2 + (Ws 0c21

and with c7 given by the right-hand side of (3.117) with n replaced by q.
Throughout Section 3.2.4, g and c, are given b- (3.116) and (3.117). This g
and this c, are not to be confused with the 9 and Lie c, given by (3.S9) and
(3.90) of Section 3.2.2.

Expression (3.68) is

SF (3) + ,q n ) 1.118)
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In (3.118), F (3 ) is given by [1, eqs. (F.111)-(F.113)]

J (-1)CnCq sinh(gc) , q n 

F(3) = n7r (-1)nc,, qsinh(gc) - Cq q = n / 0 (3.119)gc 4{sinh(gc) - ge}q~ =

1 (gc)2  , q=n 1= J
As given by (3.119), F (3 ) = 0 when q = n = 0. The right-hand side of (3.119)
was written so as to be similar to the right-hand side of (3.88). In (3.118),
( TE is given by the right-hand side of (3.91) with g given by (3.116) rather

than by (3.89). As for D(3), in view of (3.77), substitution of [1, eqs. (F.102)
and (F.103)] into (3.73) gives

b( )  2n Ce -9 L3 f - sinh(gc/2) , n even
n gc , cosh(gc/2) , odd (3.120)

Comparing the quantities F (3 ),  and D(3) of this paragraph with the
quantities F 6 of (3.88), 6' of (3.91), and b' of (3.92) and noting that the
latter quantities combined to give (3,93), we obtain

F(3 ) + ;TEbj(3) nc { J(F TE + GTEOTE)} (3.121)
q C 9 n

where j(FTE + .TEbT) is given by the right-hand side of (3.93) with 6 re-

placed by TE as described in the third sentence of Section 3.2.4. Substitution
of (3.121) into (3.118) gives

.() = + {j( e ,TEbTE} (3.122)9c

Expression (3.69) is

- = (F q ). (3.123)

In (3.123), /:'4 is given by [1, eqs. (F.129)-(F.131)]

_ I (-1)nc ncqsinh(gc) - q n 1
F (4 ) - 7 (- (1~nC,,q sin(gc) - Cq ,q =nl 0 (3.124)F()=-Yc 4{sinh(gc) - gc}

(gc) 2  , q=n=O J
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As given by (3.124), F (4 ) = 0 when q = n = 0. The right-hand side of (3.124)
was written so as to be similar to the right-hand side of (3.88). As for d( 4)
in (3.123), substitution of [1, eq. (F.126)] into (3.74) gives

= c {sinh(gL + ) - (_)sinh(g(L3+- c))}. (3.125)

Substituting (3.77) into (3.125) and using [2, formulas 651.06 and 651.07],
we obtain

((4) j2qrc f sinh(gc/2) cosh(gL 3 ) , q even
q J gc sinh(gL3 )cosh(gc/2) , q odd (3.126)

In (3.123), b r'E is given by (3.92) with 6 replaced by TE. Thus,

)TE= - jce-gL3 f -sinh(gc/2) , n even
n cosh(gc/2) , n odd

where 9 and c, are given by (3.116) and (3.117). Comparing the quantities
F ( 4 ) of (3.124), (G4) of (3.126), and )TE of (3.127) with the quantities F 6 of

(3.88), G of (3.91), and b6 of (3.92) and noting that the latter quantities
combined to give (3.93), we obtain

(+(4)bTE = q7,- (3.128)
q - cj(F + q  n .2j

where j(FTE± , TEDTE) is as in (3.121). Substitution of (3.128) into (3.123)
gives

.(4) = _q{ .j(F T + aq nb)} (3.129)

Substitution of (3.116) and [1, eq. (F.121)] into (3.70) gives

2a 1 n=q O 0}'1 j(F(5) (4I)jD13))

- 2 0 , otherwise + g jfl (3.130)crs g

where F (' ) is given by [1, eqs. (F.132)-(F.131)]

.nqr 2  (-1)'cc,sinh(gc), q itO 1 q nnO
J() 4{sinh(gc) - gc} 0 otherwise

(gc), q =n

(3.131)
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Note that [1, eq. (F.132)] is not correct. Please correct [1, eq. (F.132)] by
multiplying the denominator of the right-hand side by (nr)2 + (-TEc)2 . As
given by (3.131), F ( s) = 0 when q = n = 0. The right-hand side of (3.131)
was written so as to be as much as possible like the right-hand side of (3.88).
In (3.130), G 4) and b(') are given by (3.126) and (3.120), respectively. Com-
paring the quantities F( s ) of (3.131), (4) of (3.126), and b(') of (3.120) with
the quantities F6 of (3.88), G' of (3.91), and b8 of (3.92) and noting that
the latter quantities combined to give (3.93), we obtain

j(F(s) + q4) 3)) nqrcq C { otherwise (3.132)

where cn is given by (3.117) and Cnq is given by (3.94) in which the z's are
given by (3.95)-(3.98) with g given by (3.116). Substitution of (3.132) into
(3.130) gives

_(5) -nq, 
2 cnq + ( 2a c, 1, q = n = 0 .+ -- 0 otherwise " (3133)

(ga)(gc)2  ex 1 _ a, 0 oteris
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Chapter 4

The Excitation Vector

The elements of the excitation vector are given by [1, eqs. (5.15) and (5.16)]

JIaTM ASOn sa m j T ,eIL3

kmna be co (4.1)

icYTE 80"M m (c6 6l mn j TML3 (4.2)
kmna b

where [1, eq. (5.21)]

YSM 02 , rneven (43)M---7 m odd

and [1, eq. (5.24)]
sin(n~r- 0,ToArC) co(3T%+ -_2si 2( n,4,")sin(Oo La +

OnS - 2

=2(nr - #/3I'c)

sin(nr + OT% c) cosS(/30J" L3 +) + 2 sin2( n,+r3Z2 l ) sin(r,Tj "L)
+ 2(n7r + 0T' c) (4.4)

In (4.1) and (4.2), a is either 1 or 2, and i determines m and n as described
i'n Appendix A.

Comparing the right-hand side of (4.4) with that of (3.76). we see that

1ccf - , (4.5)
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where [nM" is nTM when r = 0 and s = 1. Substitution of (4.3) and

(4.5) into (4.1) and (4.2) gives

itaTM- 80',bn fI[6 1r~o, e-j~OT, ML3 0, m even }(4.6)
mkmnb 7( 0, m odd

JQTM - 8~0 n ~ L Joi even(46
pcTE = [6m~C~TAI] e joTIML 3 f0meen(4.7)

=mnbV 4rb 01 1, m ocdd

Multplying both (4.6) and (4.7) by -jeJ~or '
%L3 and noting that Em/ 2 = 1

whenever m is odd, we obtain

JrMjjT~f_0,n__Tf]0 0, m even1
-JIPTMeJi3"'fL3 = - 3 r nb co 1, m odd

= jTE~jOjfL3  .8d° C / 6TIt]  0, m even (49)

kJ,,,nbV 27b ' JoK 1, m odd "
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Chapter 5

The Electric Field in the
Rectangular Waveguides

In this chapter, modal expansions are found for the electric fields in the
rectangular waveguides. Afterwards, the time-average powers of the TEo
modes in the rectangular waveguides are obtained.

5.1 Expansions in Terms of the Fields of the
Magnetic Currents

The electric field E(1 ) in the left-hand rectangular waveguide (region 1) in
Fig. 1.2 is due to M01 ) and is given by [1, eqs. (2.3) and (2.11)]

E (1)
- Z V E (1)(0 , iTI) _ iTEE(1)(0 ,ITE). (5.1)
q=lp=l q=O p=O

p+q O

In obtaining (5.1), the upper limits on p and q in [1, eq. (2.11)] were sup-
pressed. We truncated the double summations in (.5.1) by retaining only
terms for which both p and q are so small that, according to (A.2),

(pi) 2 + ( _.i)< B 1 . (5.2)
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The electric field E 2) in the right-hand rectangular waveguide (region 2) in
Fig. 1.2] is similarly given by

pq , q pq - ,

q=l P=l q=0 p=O

p+q O

We approximate the .l's on the right-hand sides of (5.1) and (5.3) by the
,L's given by [1, e'qs. (3.3) and 3.13)]. In Sections 5.2 to 5.5, we express the
resulting approximate E's on the right-hand sides of (5.1) and (5.3) in terms
of the modes of the rectangular waveguides.

5.2 The Electric Field of the Magnetic Cur-
, 1TAI

rent Mpq
T ITM - 1TA1

The electric field E(')(0, Mpq ) due to 1pq in region I of Fig. 1.2 is given
by [1, eq. (3.30)]

k2 q.?LT,11tl.+ ~

E'= T -pq 11X pq (5.4)

From [1, eqs. (A.3) and (A.13)], the mode field E Tr M - is given by...-pq
T~f- k.2 -TM Y Z.+ )

E _Z TAI 4M. (y+,z+) -X p (. +)(5-P - P q t q -- t} ",q ( 5 .5 )
"fpq

In view of (5.5), we recast (5.4) as

i0 M -)= 1, El cqo .  (5.6)

5.3 The Electric Field of the Magnetic Cur-
^ 2TAMrent Mpq

- 2TM 2T,1f
The electric field E(2)(4, MIpq ) due to Alpq in region '2 of Fig. 1.2 is given
by [1, eq. (3.36)]

k2 oT,11ti _. +

__ ={114q k (y+, ) }eZ)+_I'f.po (5.7)
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From [1, eqs. (A.2) and (A.3)], the mode field ET'I+ is given by
k2 ./,rM/.+, Z+)

-.M+ zTM, TI(Y,+ z+ ) +i LU , - (5.8)pq = pq l epq I Y ,q
Y[pq

In view of (5.8), we recast (5.7) as

2T)= 1 -TEf+ ) YpqXo

E _2pq _I pq (5.9)

5.4 The Electric field of the Magnetic Cur-
^ 1TErent Mpq

1TE 1TE
The electric field E()(Q, ^pq ) due to ALpq in region 1 of Fig. 1.2 is given
by [1, eqs. (3.32) and (3.34)]

E( 1)( 0 f1TE) T (y+,Z+)

jsin(31 o(L1 + x)) + Zyr-TE cos(plo(LI + x))

jsin(doxi) + Z1Tecos(I3ixi) (5.10)1TE EY ,Z )- qxx)

E(1)(O,A4[E) "-" TE+,z+)e 'f ' (+xo), (p,q) $ (1,0) (5.11)

where
x= - x. (5.12)

In obtaining (5.10), we substituted j,3o for -ylo and used [2, formulas 654.6
and 654.7]. Equation (5.10) is recast as

-T. (Z 1 1'3r E + 1)e j31o(L1+x) + (Zly'TE - 1)e -j i3 ° (L.+x)

2(j sin( 1ox,) + ZY'E cos(p3io.r))
• IE(Y+, z+). (5.13)

From [1, eqs. (A.14) and (A.15)], the mode fields E1T and ETE are given
by

ETE+ = eTE(y+, +)e- j o°  (5.14)

10 _10 1(5.15)
T_ = eTE(y+, Z+)e~iZo , (p. q) 3 (1,80).
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In obtaining (5.14) and (5.15), we substituted j3, for nyto. In view of (5.14)
and (5.15), we recast (5.13) as

TYE 1(Z1y T E + l)ETE-e j 31oL1 ±+ (Z 1Y' T00 E - 1)ETE+e- j 0 oL1

~E~(( 0  )= 2(jsin(/hoxi) + Z1Y'IT Ecos(3 10 x))

(5.16)
From [1, eq. (A.15)], the mode field ETE is given by

ETE- = TE(y+,z+)ypqx,. (5.17)
pq p 1z( 17

In view of (5.17), we recast (5.11) as
1TE T

E()(0, MIE = ETE-Y Pxo, (p,q) j (1,0). (5.18)

5.5 The Electric Field of the Magnetic Cur-
12TErent AYpq

, 2TE ^2TE
The electri: field E(2)(0, Mg ) due to Mpq in region 2 of Fig. 1.2 is given
by [1, eqs. (3.38) and (3.40)]

2TE j sin(o(L2 - x)) + Z2YTE cos(!3o(L2 - x))eTE(Y+,z + )ZIyT(0,M0o ) =
j sin(31oX2 ) + Z2 1Y0oE cos(3 10X2 )

(5.19)

E(2)(0,M,) = eE+ +)6Y"+x-o (p,q) 6 (1,0) (5.20)

where
X= L2 - xo. (5.21)

In obtaining (5.19), we substituted Jtho for -yio and used [2, formulas 654.6
and 654.7]. Equation (5.19) is recast as

2 T.E (Z2y E + 1)e-jdo(L2-) + (Z j - 1)e-jo(L2-X)
E (2)( , o )T 1= ( 2 1

-- - -- 2(j sin(3
10X2) + Z2 'T E cos(,3 Ix 2 ))

(5.22)
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In view of (5.14) and (5.15), we recast (5.22) as

2To, o (z2  + 1)EE+e " oL2 + (Z2 YE - l)ETE-e - j1 o L2
L110 )2(j sin(OloX2 ) + Z 2

T E cos(, 1 0 xo2))

(5.23)

From [1, eq. (A.14)], the mode field E is given by

EE+ -T(y+, z+)e - -px. (5.24)

In view of (5.24), we recast (5.20) as
E (2) ( , - )2TE )= TE+; ,xqo (p,q) # (1,0). (5.25)

5.6 Expansions in Terms of Waveguide Modes

Substitution of (5.6), (5.16) and (5.18) into (5.1) with the M's replaced by
AL's gives

1) _ (ZlYTE + 1)ETE-LoL (ZlyTE _ l)ETE+e-1oL T

2(j sin(/31 oxi) + Z0iEcos(ioXi))

+ Z 1 T( Z 1 TM -)Pq xo
q=1 p=l pq

+ Z T TETEpq (5.26)
q=0 p=0

p+q o
(p,q) (1,0)

Substitution of (5.9), (5.23) and (5.25) into (5.3) with the 31.'s replaced by

Af's gives
E (Z 2YTE + 1)ETE+eJ °oL2 + (Z 2YTE - l)ET-eJ, -oL2

2(jsin(Olox2) + Z2YjO CoS~iOX2 )) 0

+~ ZEV2/"'( 1 .,+e.P o
+ V 2TE TlE+ -qXopq , pq .2

q=1 p=1 Pq

+2EEE e -Ypx (5.27)
q0 P

p+q $O
(p,q) (1,0)
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5.6.1 Normalization of E(1) and E(2)

The quantities E(1) and E (2 ) are due to the z traveling wave whose electric
field in the circular waveguide is ET given by

_To T,N 01 0 o P , J'

-0 11 e_.2 p, ¢) e-- y  6 + z (5.28)

where

Z r01 ° - khTo (5.29)

Equation (5.28) was obtained by substituting (3.57) into [1, eq. (B.1)]. Equa-
tion (5.29) was obtained by substituting (3.57) into [1, eq. (B.25)]. In this
subsection, suitable expressions are found for the quantities E( O2j.OI /L3 1

T/eoj' t and E(2)ejO'f L3 / o1Aeo. These quantities are, according to (5.28),]-Tl [eo T e

due to the z-traveling wave whose transverse electric field is V ZjI l tO(p, 0)

at z = L3 in the circular waveguide. In Section 6.3, it will be shown that the
z-directed time-average power associated with this field is unity.

Multiplying both sides of (5.26) and (5.27) by ei L'L3/Zjj't ° and using

(5.29), we obtain

e IItL) CITE-idoxETE- + CITE+C-j,31oxoTE+

[7I e FyTEV01V -1
/",IT- Pqx E rT41 -  c'7TE-e-YP9XOE I T E -

0iTM ~pq PT
-p 1: 1: + 1 S 1E q "T (5.30)

qi= pqZT q=O p0o v'2'
p+q3=0

(p,q)$(1,O)('"- " (2 = C2TE+ °-xoToE+ + C2"E- '°ooTE-

_____________FT_%1 C2T7 E+ '~Ypqxo iTE+
+ E +z + + E - . (5.31)

qipTAi q= pO TEj
p+q$O

(p,q) (1,o)
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* (V2TE.eiff"L)

1- j - (5.38)
Spqp( M 5.38

-T YPq (VP"qT

5.7 Time-Average Power

What is the x-directed time-average power associated with an arbitrary elec-
tromagnetic field (E, H) in a source-free region of a rectangular waveguide?
This field can be expressed as

E (OTM+ TM+ + CT- ET.1- T , + CTEE (-54 TE-)

p p Pq pq pq pq -p0
p,q

H -- Z(-" TH T 7 + + cT-H T 1- + CTE+ TE+ + cTE-[TE (-, pq + H P-pq - p ,q + pq + H pq + _ p q _ ) .(5 .4 1 )
p,q

On the right-hand sides of (5.40) and (5.41), the C's are constants, and the
E's and the H's are the mode fields defined by [1, eqs. (A.2). (A.3), (A.14),
and (A.15)]. The x-directed time-average power P associated with (E,H) is
given by [4, eqs. (1-57) and (1-58)]

P = jdy+ Jo dz+Re(E x H*) • it (5.42)

where "*" denotes complex conjugate and "Re" denotes real part. Sub-
stituting (5.40) and (5.41) into (5.42) and using the previously mentioned
definitions of the mode fields and the last of the orthogonality relations [1,
eq. (A.26)], we obtain

= E{CIT+e(1P2)= -IC I r(-,)Re(zA" )

p,q
-2 E Im CTMV+ cTMl- * -2jlma9("Vpq)X Ila(T.11)-2>Imag{C' (Cp" ) e ~m~vP)} Imag( Zr")

p,q
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In (.5.30),

= ( ___ 
(z1Y/E + 1)e3~ioxi

10 V ;Tj"') \2(ZYTEcos(31 oxl) +jsinc3 1 oxi))f

( 0TeiWM 3 (5.32)

10 V o~) 2 (Z11jTE COS(/31ox1) + j sin(31 0 .ri))

0 iTE+ = ~ Tj{ (ZTE() 31)eJ*%1o3
JY3T L3)(5.33)

_ ~ ~ i j k (VT~tjAfL3k _______ 0q 1 (5.34)

_pl K /lpI

- ipq V1TEej,J .%lL3 (

In (5.31),

k /1o~~") ~(zYEi~ + jin( 1x2 )
(V22e 3EL3 (343) )

10 (91(Z 2 yE jj lje i ii ,r2 )
i~~j"J 1 {( 2 ECOS(31ox 2 ) +sin3 1 r}

32T6)3



+ >~{cPTE+1 2e- 2Re( Ypq)x _I CT 1 2 22Re(,Ipq).rfX yTE)
p,q

-2 Imag{ CpE+ (CTE - )" -2J I"iag("Yp, )x iag( yTE) (!.43)
P~Pq

p.q

where "Imag" denotes imaginary part. In (5.43), we have [1, eqs. (A.13) and
(A.25)]

z = jkq (5.44)

y-TE= _.Ipq
pq - . q (5.45)

where -1pq = -j! 3 pq if the mode propagates, and - p, is purely ieal if the mode
does not propagate. Since only the TEl0 mode propagates, (5..13) reduces to

2qCA+CAI)j 13 10{jTE+ 12 _ ITE- 12}

- pq k7  ' 1

-- %pqImag{CT+(CTE-) }  (5.46)

k77 .q
(A}q).((,0)

5.7.1 Time-Averagg Power in the Rectangular Wave-
guides

The normalized electric fields E(1)e 1tfL/ Zl'-!o and E(2)ejroWiAL3/

ZJOT01 of (5.37) and (5.38) are due to the z-traveling wave whose trans-

verse electric field is - -mIT+"-J'l°f(-L3)//Zg~!ec "in the circular waveguide.

The z-directed time-average power of this field in the circular waveguide is,
as given by an expression very similar to (5.31), equal to unity. The -x-

directed time-average fower of E(1)C3&rJ ' L
3 / Z1 Z0 ° is P()w/Zer fIo given by

(5.31) as
pO)M = Ic 0rE-I2 - IC1 oTE+r. (5.47)
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The x-directed time-average power of E(2)e r "L3/ og AI° 0 P12)/zTAe°
given by (5.31) as

P(2)
T = IC o I -C2TEI 2 (5.48)

zjEeo -1100

When the incident time-average power in the circular waveguide is unity, the
time-average power P transmitted into the rectangular waveguides is the
sum of (5.47) and (5.48):

Pt = CTE - icg'rE+ 2 + E+ 2 _ I . (542)
10 10 +lO --ICo35 (5.49)
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Chapter 6

The Electric Field in the
Circular Waveguide

In this chapter, a modal expansion is found for the electric field E(' ) in the
part of the circular waveguide for which z, < z < -c/2 where z, is such that
the impressed source .'P lies in the region for which z < z,. See Fig. 1.2
where the entire region inside the circular waveguide is called Region 3. As
stated in Chapter 1, only the TM01 and TE11 modes propagate in Region
3. The coefficients of the TM01 and TEII modes in the modal expansion
for Z (3 ) are then expressed in forms suitable for computation. Finally, the
time-average powers of the TM and TE11 modal contributions to E(3 ) are
obtained.

The electric field E (3 ) in the circular waveguide is given by [1, eq. (2.7)]
__(3)  _ E_(3 (0, 1__. ) _ 11(2)) + _.(3)(j i' p , q_) .1

- E(~3)(0 i' A~~ (6.1)

where E (3 )(Jp,_) is the electric field due to ,J]IP, and E(3)(0.,l[(I)-(2))

is the electric field due to -10) - 3jL(2) where ._(1) - 3_(2) is the combination
of ,(i) and _M (2) . Each of the sources jm"P _11(l), and -:i 2 ) radiates
in the circular waveguide with the apertures closed, with the short at z = L3,

and with a matched load at the other end where z << 0.
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6.1 The Electric Field E(3)(0, -M( 1) -M (2)

Since M (') and M (2) are given by [1, eqs. (2.11) and (2.12)], we have
EN(3a, (q(1)_ M2) -iTM ) T

-y,q,p

vYTEE (3 )(qO 1 1pyTE). (6.2)
-y,q,p

The first F-.y,q,p on the right-hand side of (6.2) stands for _I Zq=l Zpi.

The second -, ,q~p stands for 2_=l q=O E P=o. Here, no upper limits are
p+qqO

placed on the indices p and q. Terms are retained only for which p and q
are so small that (5.2) is true. The E (3) 's on the right-hand side of (6.2) are
given by [1, eqs. (4.47) and (4.61)]:

Eo4a _ (k I2, T__ )_C_ T6

1 ~1 ~yTAE E___ T rs )Jr rs a)kpqV/-7 - rO s=1 , xsJr+( Xr. )
(k E)2rJr(k Ea)EYTEO

r=ls=1 (krEa)(X - r2 )Jr(Xs

(P)(sin 00o T rkE)3jr(I4Ea) T Ezb ,s 2 y(x / 2  ) } (6.3)
A(TE (sinE Eq rP ( .TE 3 T Tkr)k.aE

-. ,.--E-2- E ~ , - r2)y x,2
0 -=O s=1 rs kXpqrs 4

00 T AI 2 jr TAI ) ,-TA

4a f (kTE)2rJ(k TE() kfTE a

±(=) Ps= (' ka)(, - r )J(rs)
jE(3 (a(, 4L JP__a __

+(q) (s T )2rk .TE a) L.TE T

(ks1 )E( / 2 r )J2( rsJc0 1: 1: fr - -r_" (6.4)

In (6.3) and (6.4), _1TE is given by (3.58). Furthermore, EITAX , E TEs, and

ETEZ are given by [1, eqs. (4.74)-(4.76)]:
E "YT M O ={-zTM I sinh(yTill(L 3 - z)) + zTAe ' (L3- )}

{ 1jr TM rJr (krTM)" -P l '(]  
- l kT;"

37



OT-2](T Mq I - TAIpT
zM i cosh(yTI(L 3 - z)) + ZAe--T(L3-)} UzP (6.5)

ETE= {zTE sinh(_TE(L3 - Z)) + ZTE2 e 'YyI (La-2)}

01 qrJ(Typ)}• rJ(k - _ . I J'(k EP) (6.6)

ETZ {T3sinh(7 rE(L 3 - Z)) + ze__er,(L3Z)}

• I(-1) . V k T Ep) +U.004J:(kTEP)}. (6.7)

The O's in (6.5)-(6.7) are given by [1, eqs. (E.10)-(E.13)]:

y1 (1 cs(-) + ) - 0(2) s in ( y )} (6.8)

OIY2 0(2) cs('--o) + 0(1) sin(y-+ (6.9)

0 (y ) (6.10)

-4) cos(_.) + 4o3) sin( "-)1 (6.11)

The y's on the right-hand sides of (6.8)-(6.11) are given by [1, eqs. (2.15)
and (2.16)]:

yI+ = (r - O)Xo + b (6.12)

y k+ = OXo + -. (6.13)

The Op's on the right-hand sides of (6.8)-(6.11) are given by (:3.40)-(3.43).
For simplicity, we assume that z < -c/2 so that [1, eqs. (4.77) and (4.83)]

zTMI = TEI = TE3 = 0. (6.14)

Since z < -c/2, the remaining superscripted z's in (6.5)-(6.7) (namely ZTM2,

zTE2, and zTE4) are, as stated in [1, page 34], given by their expressions in
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[1, Appendix F] with z+ replaced by zero. For x,, < ka, we have [1, eqs.
(F.26) and (F.35)]

z [ sin(q -c) cos(3d L+)  -2sn( )sln(/pL 3 )

c R 3 2 3c1

+ sin(q8+c)cos(0L a6 +) + 2sin2(._-)sin(0r36 L+) /(2q6+c) (6.15)

_TE4
= J

C

sin(qTE-c) COSTE + c) T sn ( L ) /(2q T- C)
E+ Lcos(I3 ) - 2 sin 2( 9q2-- T)

+3 ~s~n~c qTE+c snIrL)J /(2qTE+ c)]+j[{sin(q TE+ c) cos(<3TEL +) + 2 sin 2 sin(13TEL) /(q+IC

(6.16)

For x,, > ka, we have [1, eqs. (F.33) and (F.42)]

f= { csinh(y -sinh( y (L+ - c))+ ((qc

(6.17)

Z - qr {sinh( TEL+) - (-1)q sinh(7TyE(L + - c))} {(qyr)2 + (-SYEc)2}.

(6.18)

In (6.15) and (6.17), 6 is either TM or TE.

6.1.1 The Quantities EtTA E TE¢ and E-TEz

In this section, expressions (6.5)-(6.7) for E.TAI0, E.TEI, and E.TEz are first
reduced by means of (6.14), and then expanded by means of (6.8)-(6.13).
Next, the -z-traveling modes of the circular waveguide are introduced. Fi-
nally, the expressions for EYTMO , EiYTEb, and LEYTEz that were obtained by
means of (6.8)-(6.14) are recast in terms of the -z-traveling modes of the
circular waveguide.
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Reduction of (6.5)-(6.7) by means of (6.14)

Substitution of (6.14) into (6.5)-(6.7) gives
E " TA c O = zTM2e--yTI(L3 - z)

{ 1 p TMy .2]TM- /]TM p)

2 sP I zk Ap +Z 7 TM J (6.19)
• € :k ,p- kTMp +uL A

E'TE =zE2 e-~ T E(L 3-z) { ¢'2rJr(kTEp) )= p -A€1 kTEp) r (6.20)

-y Az0- 3 rJ r ( k T E
p)= ZT\-yT(3z rs P) / I TEP

E__2 TEZ = zTE4-k e Y(L 3-z)(-1)" o C rkkEp) t_U4Js(Ep) .(6.21)

Expansion of (6.19)-(6.21) by means of (6.8)-(6.13)

Substituting (6.12) and (6.13) into the arguments of the trigonometric func-
tions in (6.8)-(6.11) and using [2, formulas 401.01-401.04], we obtain

cos (-y+ =(-1) y cos ( r) cos(r) - (- 1) "i sin(rO)(6.22)

sin ( ) = (-1) "{ sin (b cos(r-) + (-1)icos sin(rO) (6.23)

Substitution of (6.22) and (6.23) into (6.8)-(6.11) gives

- ( (), {(_),+lb, cos(rO) + Ob2 sin(ro)} (6.24)

¢,2 = (--1)'r {o2cos(rO) + (--1)'blsin(rO)} (6.25)

O¢,3 = (-1) {(-1)+,1'3cos(rO) + ¢4sin(ro)} (6.26)

O,4 = (_l)jr {r4 cos(ro) + (-1)'€b sin(ro)} (6.27)

where

b1 = 0(1) cos ( -- 42) sin (b (6.28)

42 = 000 cos (--) + 1) sin r) (6.29)
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44= 0()COS rbo +0(k3 ) sin rb(6.31)

Substituting (6.24)-(6.27) into (6. 19)-(6.21), we obtain

E7TNIO =(l)rTA12 -' TM(L 3 -z){(lyrb1

.{TJ(kAp) iq) + rJr(kTMp) cos(rqO)

k$MJ(k si n(r) }+ k2~j M pc
~rs

k ~r (kEp) sin(r)

+a, r rsk+P42 f i Jr(k Tp) (r) -

rb{ Jr (kp) sin(rq) + AI u1 J(k"p) Cos (r )} (34

E

The-zTraelng od s fhe inrula Wakveuide~o~

E~~MeI Erfo, T ran TEO ie by k [1, ) es (2) B.) (.33)
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and (B.56)]

le- '~e (kT.1I)2V~T~fe(p, ) ~f
rsA TM Zs

LETIA - s ~teoer ep,+)g .we I (6.37)

rs - s e~ea (p,6e+ 1L (6.36)

where [1, eqs. (B.25), (B.7), (B.22), (B.30), (B.33), (B.51), and (B.62)]

-~~lc (6.39)

4 ,T~fe(p o) - Er jr(krs p) cos(rO) (6.40)
rs T r xJr+I(Xr,

3 )

T'Je( ) - _ Er( 1
aJr+l (Xr,)I

JkTM - rJr (kIp) sin(rf(6.41'iJr(rsP cos (rP k(641

oT$~fO(p, r - 2 Jn(k lp) sin(no) (.2

7r (

7 a.Jr+i(Xn4I

sAInP r + L,, rJ, (kT';"p) cos(r63)l(.3

{rPJr(k r3 sin(rO) r3iJ~(~E~csr) (6.44)

frE (p,) 0 r4- (r~)

T(X,2 2



rj,(krsP) cos(rO) + ~ T .I\
{up kTEp + 14krVrs p) siflV9)f (6.45)

In view of (6.39) and (3.49), substitution of (6.40) and (6.41) into (6.35) and
(6.36) gives

rJr(k-,Mp) sin(rk) kT~Af j. (kT';"p) cos (r 0)

-~ JA kI'p ~TA j(6.46)

=To £ f (i$'?)) Y'mj{t ~iJ(k T;'p) sin(rOk)

rJr(k'Afp) cos(rO) + kTA'Jr (kTAlp) sin(r )} 6 )

Substituting (6.44) and (6.45) into (6.37) and (6.38), we obtain

r(7X12r- r2) r~

IL rJr(krsEP) sin(rO) + J(k TEp) cos(r$) 1  (6.48)

ETEo - 2 kf
rs rX2- r2) (

{LrJr(k rE3 c s~~ + l,(k TEP) sin(rO)} (6.49)

Expressions for E TO .ETEO I and L.-TEz in Terms of XWaveguide,
Modes

Equations (6.46) and (6.471) reduce (6.32) to

EYT~e - ~1~r (Z ) aJr+i (Xrs)

{ 0b2ET~e- + (-,i) YobKTM} r.,P -L 3  (6.50)
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Equations (6.48) and (6.49) reduce (6.33) and (6.34) to

/ 2('- r2) ( Z E 2 Jr(3 ))

){( f ,bl Ee- - o b2ETE_- - YTEL3 (6.51)•~ -1) %E, -P~

1Y ~ _ )-yr] , a rl) (, - rtxs
E = (-2 v - T E4 Jr(s)

{( 1)'Y¢b4ETEe- + Ob3ETEo- e-rL3. (6.52)

6.1.2 Expression for E(3) (0,-AM(j1 - A1(2)) in Terms of
Waveguide Modes

In this section, expressions (6.50)-(6.52) for E.VTMf , E , and _ETEZ are
substituted into expressions (6.3) and (6.4) for E(3)(0, MTAI) and E(3

)(0

TEy~M (3) aE -YA (3)(0, 1[[,TE] r

JATEq). The resulting expressions for E .... and _pqE) are

then substituted into expression (6.2) for E3 - __ -

Substituting (6.50)-(6.52) into (6.3) and (6.4) and using (3.49) (3.51),
we obtain

- 1  ) 2 -- V 00 c-TA12
pqT kq ') SCZTAeo

kpbr=0 F2 3= sl

(d~b2ETe +(--1) p Ers ) e- T  q (-

r=1 $=I C X 2 - r2

"(-rvb1f
T Ee- "2 Fb2ET Eo- --ELl3 + PC (sin s:,) (/x'. -I-

00 _2 TE4 -xrs" ((63 1"4TEe- + b3LTEo• -=yb E Tac - + p Ers ) 3 1 (6.53)

T q - sX1 rs

(3Ab2ErMe + b P(-1.r oo E )_, p
+r- -b = 1 c -
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((-1)~1bE TEe- OU E T Eo-)eEL- q (i o)Z -PT

00 TE4

rs: (( -)~~4~e + rs~o eL} (6.54)
.9=1 'd'sac r24 r2-

Substitution of (6.53) and (6.54) into (6.2) gives

E(3)~ (a IVLl) 2 ) 27rb ~~ 0

2 S 1 TAeO
C z

(TAle ETNMC +sTAfoETAfo.-) e-,YrLa
rs +s rs -rs,

+ +.sEoi~o)erL3 (6.55)

where

2 / T112\

sTMe = -~c / p~4 2  (6.56)

-0 2 -T2(-I)-, E E EpqCi~bl (6.57)

p+qi4O

sTEe (~5-)5 5 pq

v-I q~Qp+q$O

-TE C-~b1 /snA\ TE4 \YI
.Lr (Jp - TE)~ ~ 2 b (6.58)

rs yI q0 p=O
p+00O
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ZTE2\ )C 1 ~b2 + ('o (ZT1x1 2~
\CJ kP0  -c yT Ea (6.59)• c , 011 +\ ro a Y

_Pq 1 !E q (6.60)% kpqb 4

= (-1) (i' + (PC )V-TE)~-I'qVpq + b Pq )(6.61)

02 = (1r b )pq~ - q PTE) (6.62)

In (6.61) and (6.62), VYT M f = 0 when p = 0 or q = 0.

6.2 The Electric Field E(3 )(jimP, 0)

Since x0 l < ka, we have, from (3.57),

-yA" = j1TN. (6.63)

Substitution of (6.63) into [1, eq. (5.10)] gives

F( 3 ) mPa) = 2j e - j ALM L3  (k TTf sin(-T(L3

(/i- aWJl(Xo,) I,-P0 1 01 0)-zk TM J o ( k Til (664

01 kop)cos(3oT (L 3 - z))} (6.64)

where f13T,1' is given by (3.59).

6.2.1 Expression for E(3 )(j'mP, 0) in Terms of
Waveguide Modes

Since, as stated in [1, page 37], the only z-traveling wave contained in
E( 3 )(Limp,g) is the unit amplitude z traveling TMo! wave, we suspect that
L(3 )(Ji-mp,0) contains only TA! 01 modes. Expression (6.64) for L (3)(jimP,0)
is recast as

TV___ _T__ /. 3 IhT P1

= ~ ~ 1 t { \O + It l'~~iA!)e 01oi~
P -raJi (X01) WE "E

46



2j3Ti L TA TA II TI i .A ,

lip +o~o LP) ejo (6.65)+7vraJ,(xol) -- we, - 3,C

From (6.40) and (6.41), we have, in view of (3.46),

J TMp)(.6
fTe(p) = J0(k TM )

e (T° "p) (6.67)

so that (6.65) becomes, with the help of (3.51) and (3.49),
{ TM, ,TM,2-- ArM , }0

E( 3)(jimPQ) - { - ,) ± - (k 01): (-JOI)Z

e2IM L3{ f e~ 01 + kA 2 e(p, 4 e) 01~'~z (6.68)

Substitution of (6.63) into (6.39) gives

t= zm u " (6.69)

Substituting (6.69) into (6.68) and recalling (6.63), we obtain

E(3)(I pP,0) = E ;j te+ + e 2j 3 _. o -(6.70)

where E4i' e+ and L"h - are given by [1, eqs. (B.1) and (B.2)].

6.3 The Electric Field E (3)

Since (6.47) gives
4_j1t - = 0 (6.71)

and since (3.57) gives (6.63) and

TE =-TT =j13T , (6.72)
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substitution of (6.55) and (6.70) into (6.1) yields
7r /-Srjfe-~jT0'YL3)

E(3) T lfe+ + 2, V 0 "o0 1 + e-2jo7L 3 E+o ife-

- (- b Te T~ee- + rTEOE TE o- --jTEL3 + 2

s-0 -{z ~ r S + Sf;~~ 1 )er '"

s=1 ZT.WIeo

(r,s)9 (0.1)

+ (sTETEe- + sTEoE-)e yEL3} (6.73)

(r,s) -(1,1)

The only z-traveling wave on the right-hand side of (6.73) is the incident
wave whose electric field E.o'i'F+ is given by [1, eq. (B.1)]

pT~e+ { ,TT\leo ~e, (TM)20TA\I,

- -o z0 e k (p, ) + (u' feji( o } (- " 3T (6.74)

The time-average z-directed power associated with E is. as given by

a iormula similar to (5.31). ZTOQ)'O. Moreover, fE + has the phase factor
e_ rjOTL 3 when = L3 . However, the normalized electric field Emi'+eir01L3/

V ZOT1" has unit power and no phase factor when z = L 3. Thus. the z-

traveling wave part of E(0)1JA01 3 / ZjjAteo has unit power and no phase

factor when z = L 3. Multiplying both sides of (6.73) by e,! / teo,

we obtain the normalized electric field E(3)C.0'L3/- f gie n bv
01 1 1

E(3) r'  01 16; _
( e 4 f ~ L _ ' \_ e ~ I I't L 3 

- C I I -j E"f~ i

+ (e- L3 (CTEe ETEe- + ,, ,,

r' /= TM\

(r,,- A oz+
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{( 0 e-'Y;EL3 ( T a- 'I
r=O = S )T (6 75)

(,7)1,1)

where ZT M, °eo is given by (6.39) and [1, eq. (B.54)]

-TEyTEeO- irs (6.76)
S jw1"

In (6.39), ,yTt is to be replaced by jO3TM. In (6.76), .1TE is to be replaced
by jjOE. The C's in (6.7) ) are given by

= 2 b y Tfeo j(67L3

cI ZT~eoSe

0 T~o - 271b TC TEej/'i (6.79)

C - -2 2 b eo01,, (6.78)

cTEe - irb F lTEeo S Eee'fL3
1 2 7 2T SeEo L 3 (6.78)

C C 2=2zgj,1A o

"01

termon_ r e of (6.75) maks t

tt a -2h-- p--s eoftheoeffcien (680)

L : I 0"° TAle

-2 _ !_F7r jOO ,% L3 (6.81)

( l s ( qT~ejl3 " r L

CT V -2-V b ' sTeo"tfz (6.82)

C
T °  

-am-~° sTEoe
j I O

,"
L

, (6.83)

The magnitudes of the squares of the constants CoT ¢, CT1 and 11E are

time-average powers (see Section 6.3.1). The minus sign which precedes the

E__oAf'- term on the right-hand side of (6.75) makes the phase of COT Al equal
fe Tilfe- T E e -

to the phase of the coefficient of l '(p, -). ,e (63) h , - r 1, 1
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and E TE o - terms in (6.75) were patterned after the _ET?,. - , ET e- , and
ET1 terms, respectively.

6.3.1 Time-Average Power

The time-average power of the normalized electric field E(3)e 00L3,/ 0T1Me

of (6.75) is given by a formula similar to (5.31). This power consists only

of the time-average powers associated with the EAe+, _411-, E TEe - , and
ETE0- terms on the right-hand side of (6.75). The time-average z-directed
power associated with the E01 term in (6.75) is 1 W. The time-average
-z-directed powers associated with the _Tf e - , E TE e - , and ETEo- terms in

(6.75) are JCTM 12, Ic1Eel2, and lcTE°I2, respectively.

6.3.2 The Coefficient CjT M e

In this subsection, COT1j"e of (6.77) is expressed in a form suitable for calcula-
tion. In (6.77), S T M e is given by (6.56) in which the quantities zTAI2/c and

P 2 appear. Comparing (6.15) with (3.76), we see that, since xo, < ka,

z 2 q (6.84)

where [] is ¢ when r = 0 and s = 1. Here, S is either TM or TE.

Setting r = 0 in (6.29), we obtain

42 = 42) (6.85)

Substitution of (6.61), (6.84), and (6.85) into (6.56) gives

sT -TM Epq 0 2) q + (L)v-TE (6.86)

_ Gq 01EP( qb P
Iy q=0 p=O

p+q O

The quantity ZjT '~e° in (6.77) is given by (6.69):

Z _
M ' ° - 0TM (6.87)

k
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Substituting (6.86) and (6.87) into (6.77), we obtain

2 fn~,r ( V-qTM ejOO0 AfL3)

C~Ae =-1+ Z Z, Z CTCYTM (VP~iM3\

•=1 q=O p= k ]

p+q0o

+ e'-TE (VqT O ;,p q } (6.88)

where

01 ,pg -" ,PT l. q 0102

0 TIeyTA'I __ l ) q E pq qITA 1 ( (6.89)

"Te'yTE = rb (k i/C \q [TM] 01 (2). (-0
01,pq c J jpq [Gq (69

6.3.3 The Coefficients C T Ee and C T E o

In this section, C T Ee of (6.78) and C T E ° of (6.79) are expressed in forms
suitable for calculation. In (6.78) and (6.79), S T Ee and STE' are given by
(6.58) and (6.59), respectively. The quantities zTE 4 /c and ITE a appear in
both (6.58) and (6.59). Comparing (6.16) with (3.108), we see that, since
x11 < ka,

z =(6.91)
c 2 q

where [6(4)] is d(4) when r = 1 and s = 1. From (3.58), we have

1TE = j 1E. -(6.92)

Substitution of (6.61), (6.62), (6.84), (6.91), and (6.92) into (6.58) and (6.59)
gives

xI2 q- 1 = {[ T E] O (qIT + TE)
p+qikO
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_____ 1X12 b ( (PC VTM - qV- TE)+ (sin€o)o [(4] x14 )TEa T  q (6.93)

p+q¢O

The admittance y 1TEeo in (6.78) and (6.79) is obtained by substituting

(6.92) into [1, eq. (B.54)]:
y TEo ,3TE (6.95)

Substituting (6.87), (6.95), and (6.93) into (6.78), we obtain

SCTe =1 2 pq I {[d~TE) b2 (V VT eJ/33ML

2 V71 j1 q=O p=O

p+qAO

±c~ 0T (VT,,3L3 }(696

where

C11 bir (6.94)

00 {q(

(6.92) isinto (1, 4) eq (.5)]

±(-) k-#J jl, } (6.97)

0 TEery'TE= - i f TE --pq I(P(c GT' E) $b |- ) -,  I

C / ~~3T 21 1 -

-q (si-) = } (6.98)
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Substituting (6.87), (6.95), and (6.94) into (6.79), we obtain

2[ VTMejfO
T M L 3 )= i: : Y:. CT o,-YTM Vpq

y =1 q=O p=O

p+qiO

±cT~o,,TE (VpqT eJ M L) }~q7 (6.99)

where

T~o2Irb T (1)'Y pq {q(TE),, b2
-il T- q l p

12 (6(4(6.I00)1In'- q } (6.100)

+q 11 €o/TE •
cTEe,-YTE - 2r 1 1) pq (TE),,42

The Cp's in (6.97), (6.98), (6.100), and (6.101) are obtained by' setting
r -1 in (6.28)-(6.31). From (2.8) and (2.9), we have

= €o(6.102)

2Xo

so that in(b ) b . (6.103)

Assuming that 6 < ( a/2, we have

Cos( ) = 1-( )2. (6.104)
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Substitution of (6.103) and (6.104) into (6.28)-(6.31) yields

S- ( 1)2  
-b 0( €2) (6.105)

Wa ~ 2a) 2aJ P 616

4= 1 (6.10)

= 1 b) 2 0)+ () (6.108)

54



Chapter 7

The Tangential Electric Field
in the Apertures

The tangential part of the electric field in the left-hand aperture A, is called
E(AI)(, z). The tangential part of the electric field in the right-hand aperture
A2 is called EA 2)(0, z). These tangential parts are given by

_E('A)(0,Z) = 1x X M 1, 2 (7.1)

where uP is the unit vector in the p-direction and M (") is given by [1,
eqs. (2.11) and (2.12)]. Substituting [1, eqs. (2.11) and (2.12)] into (7.1),
we obtain

~A)~Z) = V~'YfM (IL x 2q
p=O q=O

p+q3o

+Vy TE _ x MTE q¢,)) } (7.2)

where the double summation is truncated as in (5.1). In (7.2),

VPYTM =0, p=O or q= 0. (7.3)

Substitution of [1, eqs. (2.13) and (2.14)] into (7.2) gives

EA),) = u(-1) (-o
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T Mi a 3pq (Y+, + + V-T TE(y , Z+)
p-O q=O

p+q O

v& { M TM(yY+z+) + vTEeTE(y- , Z+)

p=O q=O
p+q$O

where y+ and z+ are given by [1, eqs. (2.15)-(2.17)]

b (5

yY+ = (2 - -)Trx + (-1)-'x, + b (7.5)

+C

z = Z + 2 (7.6)

where, from (6.102),
b

Xo= - . (7.7)

Now, eTM and e TM are the y- and z-components of ep-T given by (A.10),
and epq and ez are the y- and z-components of eTE given by (A.23) so that
(7.4) becomes

(,z) (-)'27r (sino

j ( 1 ) (rT M  V-TEC piry + s q7rz• z Ep --q, + b a/co-v sin
V pq ~ p + qp=O q=O _4 TPq qbC

p+q*O

pr Y"+__ q7-z +
q 1 I (Vqc  + PVTE sin PY cosV C=n 0=0 

C 
4 kb C pq b pq b b

p+qgu

(7.8)

We want to normalize EtA)(¢,z) of (7.8) by dividing by -JE i't'+j,
where the subscript "rms" denotes the root mean square value of the trans-
verse part over the waveguide cross section at z = 0. Recall that f_0I le+ is
the electric field of the z traveling wave in the circular waveguide. We choose
to divide by -I EorM'+ rather than IEI"'+ I,,, because the z-directed elec-
tric current associated with aET+ is negative at (p, z) = (a, 0). This electric
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current is given by -ui x H'1 + where HT~V + is given by [1, eqs. (5.2) and

(5.9)].
According to (6.74), the transverse part of E;we+ is ZjAI eo~ij" (p, €)

• e-j~r M z so that

1E',1, 1 = IzMeO I { pdp j d(T  M ) } (7.9)

One of the orthogonality relationships in [1, eq. (B.64)] and

01 - k3l M (7.10)k

reduce (7.9) to

IETItrM'+ i 7 -T1 (7.11)

Equation (7.10) was obtained by replacing 1/(we) by 7/7k in (6.69). Substi-
tution of (7.11) and (7.5)-(7.7) ifito (7.8) gives

rms p=O q=O
p+q$O

a /VTMJeP z TML 3 \ V.TEe j ,EL3(~) (La) pq6O' - ,qi

qZ Z 1~COS -i((-1) t + (2 - -)7r) + LTlsin -

A2q 0  2 c 21

Fu~ Ir k ' j ITML3  ~~
c p=O q=O

p+q*O

JmeqLM L )_____ (a) VTEeJ2OOT'L3)

*qa (tb)' Vc (+ TL VPL3)
kpqb 77 b77

•sin {( ((-1)-€ +(2-y)7r)+p - cos + . (7.12)
20oI 2 J .c 21

When z = 0, the 0-component of (7.12) is E(A_")(0,O)/ILTE+Irm given
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by

/0 1 ('p \ V TML3 M

W h e n = ( 2 y ~L a t h eq z c Mp o e n jo f M ( 7 1 2 is -qi( 2 .~ y .E I E L 3 I ~ i

y)~'r z) -2ir 

(_L e ja~jL S S

W h e (2 -t~s e -cop n n 2 ) ( .2 i ( -(7 ,z

(Eb ) { (-) ( V1aOTM L3 V Y ~ 2 E 3

((2 -y ir, ) f r b 58



Chapter 8

Numerical Results

A computer program was written to calculate the time-average power trans-
mitted into the rectangular waveguides, the time-average power reflected in
the circular waveguide, and the 0 and z components of the electric field in
the apertures. This computer program will be described and listed in a sub-
sequent report. Some numerical results obtained by means of this computer
program are presented in this chapter.

When the time-average incident power in the circular waveguide is unity,
the time-average power transmitted into the rectangular waveguides is Pt
given by (5.49) and the time-average power reflected in the circular waveguide
is called P. According to the discussion in Section 6.3.1,

Pr = I + icTEeI 2 + I(8.1)

Figures 8.1 to 8.5 show plots of Pt and P, versus ka for various values of L3

when

b = 1.

a (8.2)
C -0.5
a

The plots of Figs. 8.1 to 8.5 are for L 3 1 01 ka=2 .95 = 0.35, 0.40, 0.45, 0.50,
and 0.55, respectively. Here, [AT 1]ka 2 9 5 is the wavelength of the T1 01
mode in the circular waveguide when ka = 2.95:

[.A TM 9 2ra
01  . (2.95)2 - (8.3)
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1.0 f I I
- P1. P

PttP,,P, 0.5-

0.0 -'

2.85 2.90 2.95 3.00 3.05 3.10

Fig. 8.1. Plots of the ratio Pt of the transmitted power to the input power

and the ratio P, of the reflected power to the input power when

L3 = 0.35 [M] ka2.. The input power is the power of the inci-

dent TMo1 wave in the circular waveguide. Pt + P, = 1.

1.0 - I I I I I I I I I I I I 

Pt,P 0.5

PPt

0.0 - -I I, , I I I I ka

2.85 2.90 2.95 3.00 3.05 3.10

Fig. 8.2. Plots of the ratio Pt of the transmitted power to the input power

and the ratio P, of the reflected power to the input power when

L3 = 0.40 [AT'IM]k 2. The input power is the power of the inci-

dent TMo0 wave in the circular waveguide. P + P = 1.
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1.0 - 1 1 1 1 1 1 1 1 1 1 1 1 ,L

PoP 0.5

- Pt

0.0- -* ka

2.85 2.90 2.95 3.00 3.05 3.10
Fig. 8.3. Plots of the ratio Pt of the transmitted power to the input power

and the ratio P, of the reflected power to the input power when
L3 = 0.45 [AgMTM] ka=2.95 The input power is the power of the inci-
dent TMo1 wave in the circular waveguide. Pt + P,. = 1.

1.0-

P,P, 0.5

0.0 - -* ka

2.85 2.90 2.95 3.00 3.05 3.10
Fig. 8.4. Plots of the ratio Pt of the transmitted power to the input power

and the ratio P, of the reflected power to the input power when
L3 = 0.50 [AO] ka-2.95 The input power is the power of the inci-
dent TMo1 wave in the circular waveguide. Pj + P, = 1.
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1.0 - I I I I I I I I I I I I I I I I I I I I I I I I

P r

PI,Pr 0.5

Pt

0.0 - T f I Il I rI -I ka

2.85 2.90 2.95 3.00 3.05 3.10

Fig. 8.5. Plots of the ratio Pt of the transmitted power to the input power
and the ratio Pr of the reflected power to the input power when
L3 = 0.55 [)1O kaT 2.95 The input power is the power of the inci-
dent TM0o wave in the circular waveguide. Pt + P, = 1.

With the value of x~l given in [5, page 2], (8.3) becomes

[AM =2.9 =V 2. 2 - 3.67738806a. (8.4)1(2.95)2 - (2.40482556)2

The value ka = 2.95 was chosen because it is fairly central to the range of
values of ka in Figs. 8.1 to 8.5 (see the next paragraph). The values of LI,
and L2 do not matter because the loads Z1 and Z 2 were chosen to be matched
loads, that is,

ZI = Z2 = 1. (8.5)

The curves of Figs. 8.1 to 8.5 are plotted for the entire range of ka such
that only the TE1o mode propagates in the rectangular waveguides and only
the T.\o 1 and TE 1I modes propagate in the circular waveguide. Since only
the TE1o mode propagates in the rectangular waveguides,

< kb < mi (27, r) (8.6)
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where "min" denotes the minimum of the values in parentheses. Since only
the TAl 01 and TE11 modes propagate in the circular waveguide,

xol < ka < x.1. (8.7)

Substituting (8.2) and (8.3) into (8.6), we obtain

2.85599332 < ka < 5.7119866. (8.8)

Taking the values of x01 and x' given in [5, pages 2 and 32], (8.7) becomes

2.40482556 < ka < 3.05423693 (8.9)

Combining (8.8) and (8.9), we have

2.85599332 < ka < 3.05423693. (8.10)

In Figs. 8.1 to 8.5, Pt approaches zero as ka approaches 2.8559932. This
is expected because the TE10 mode, which carries the transmitted power,
ceases to propagate when ka becomes less than 2.8559932.

The numerical data of Figs. 8.1 to 8.5 were computed with

BKM = 15 (8.11)

XM = 40. (8.12)

The parameters BKM and XM are not written with italicized letters because
they are input variables for our computer program. The parameter BKM is
introduced in (A.1) and used in (5.2). The constraint (5.2) on the values of
p and q determines the order of the moment matrix [yl + y 2 + y 3] which
appears in [1, eq. (2.22)]. When BKM = 15, the order of the moment matrix
is 32. The parameter XMVI is introduced in (B.4). The effect of XM is to
truncate the doubly infinite suni F_=o T_', that appears in (3.1)-(3.4). The
truncated sum is _r=o IT=aImax where sax, which depends on r, is the largest
value of s such that

jo,, 8  XM, r = 0 (8.13)
j 4 ,<XM, r=-1,2,... "

Assuming that XM > J0,1, rmax is the largest value of r such that J'1 - XM.
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Some of the time-average incident power is transmitted into the rectangu-
lar waveguides. The rest of it is reflected in the circular waveguide. Therefore,

Pt + P, = 1. (8.14)

The plots of Pt and P, shown in Figs. 8.1 to 8.5 do indeed satisfy (8.14).
Because the "alues of Pt and P, computed separately from (5.49) and (8.1)
satisfy (8.12) we have some confidence in their accuracy.

The magnetic field due to the impressed source PmP radiating in the
circular waveguide with the apertures closed is H(3 )(Limp, 0) given by [1,
eq. (5.11)]. The electric current at z -- 0 on the wall of the circular waveguide
associated with this magnetic field is J given by

jO'P" L32J = 01 cos(f' 3 ). (8.15)

The magnitude of J of (8.15) is maximum when L3 = 0..5A T ' where ,\T is
the wavelength of the TMo1 mode in the circular waveguide. If an aperture is
put where the electric current would otherwise be maximum, the tangential
electric field will be large in this aperture. A large aperture field gives a large
transmitted power P. Thus, we expect Pt to be large at ka = 2.95 in Fig. 8.4
because L3 is then equal to 0.5A TM . Actually, Pt is even larger at ka = 2.95
in Figs. 8.2 and 8.3 where L 3 = 0.4Az'f and 0 .4 5 ATA

1 , respectively. When
ka is held at 2.95, the curve of Pt versus L3/A TA; shown in Fig. 8.6 attains a
maximum at a value of L3 /Ao TA somewhat less than 0.5. This phenomenon
may be due to the finite extent of the aperture in the z-direction. Note that
Pt = 0 at L3 /AT" = 0.25 in Fig. 8.6. This is expected because the magnitude
of J of (8.15) vanishes when L3 /Ao"'T = 0.25. In this case, the aperture has
little effect because there is no flow of electric current to stop at z = 0.

The data for the plot of Pt versus L 3/ATl t of Fig. 8.6 were computed with

b
_-=1.1

a
c- = 0.5a

ka = 2.95 (8.16)

BKM = 15

XM = 40

Z, = Z 2 = ZE
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1.0- -

Pt 0.5

0.0 3/ - 0

0.0 0.5 1.0 1.5

Fig. 8.6. Plot of the ratio Pt of the transmitted power to the input power
versus L3/A TM when ka = 2.95. The input power is the power
of the incident TMo1 wave in the circular waveguide.

The curve in Fig. 8.6 was terminated at L 3 /ATM = 1.5. As L 3/A To becomes
larger and larger, Pt versus L 3/ATM becomes more and more periodic with
period one. Adding one to the value of L3/AlTM does not change the reflection
of the TMo1 wave from the short at z = L3. It only changes the reflections of
the even and odd TE11 modes and all the nonpropagating modes. Now, with
the parameters of (8.16), our solution for the electric field in the circular
waveguide did not contain any TE 1 modes. The computed values of the
constants C T E e and C T E, in (6.75) were zero. When L3/ATMw is large, there
is not much reflection of nonpropagating modes from the short at z = L 3
because any nonpropagating mode suffers attenuation on its journey from
the aperture to the short at z = L3 . Furthermore, its reflection suffers the
same amount of attenuation in going from the short at z = L3 back to the
aperture.

In Fig. 8.6, P, could not be plotted for L3/A\T.11 < 0.0679S3034 because
L3 cannot be less than c/2. The approximate value 0.067983034 is obtained
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by writing
L3 c
TM - 2o(8.17)

and substituting (8.3) and (8.5) into the right-hand side of (8.17) to obtain

L3 _ (2.95)2 - (2.40482556)2
AT -= 0.067983034. (8.18)A0~i1  -87r

Figures 8.7 to 8.13 show plots of IE(A2)(,O)[/E_Txte+Irn of (7.13) ver-

sus 0/0, and IEvA2)(0, z)I/IjIE___o+I. versus z/c for ka = 2.855994, 2.86,
2.90, 2.95, 3.00, 3.05, and 3.054236 when L3 /[AT]kM 2 .9S 0.5. As given by
(7.13), EA)(0,O)IIE 1. is the q-component of the normalized elec-
tric field at z = 0 in the right-hand aperture A2. As given by (7.14),
E A2) (0, z)/IE~o1e+I. is the z-component of the normalized electric field
at € - 0 in A2. The values 2.855994 and 3.054236 were purposely chosen
close to the lower and upper bounds in (8.10). The curves in Figs. 8.7 to 8.13
are not smooth because they were obtained by drawing straight lines between
points spaced 0.025 apart in €/€o and 0.05 apart in z/z 0 . In Figs. 8.7 to 8.13,

jE(A2)(0, z)I is generally much larger than IE(A2)(0, 0)1. This is expected be-
cause the aperture A 2 stops only the z-directed electric current J of (8.15).
There is no C-directed electric current to stop.

The data for the plots in Figs. 8.7 to 8.13 were computed with

b
-=1.1
a
c
- = 0.5
a

L3 = 0.5[A T M1 ka 2 9 5  (8.19)

BKM = 33

XM = 100

Z 1 = Z 2 = ZTE

where [T 0I"k]=2.95 is given by (8.5). For the data in (8.19), the computed
values of VT"J and V'rTE satisfy

VIT =VTM (8.20)

VIT E -V
2T E
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1.0

IE O-2)I 0.5

0.0-

-1.0 -0.5 0.0 0.5 1.0

200 I I I I I

150

IE(A2)I -
ipme+l 100

50

0 z

50- -~

-0.5 0.0 0.5

(b)
-,A )/IT,\le+,".(1jjf ;1l"

Fig. 8.7. The ratios (a) / - -oE j and (b) iE '2)I/I Eo~f+,- of the
magnitudes of the 0- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
TA! 01 wave in the circular cylinder when ka = 2.855994 and L3 =
0.5 [A01 I ka-2.95"
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Il | I I __

1.0 I I

IE(A
2 )I

0.5

0.00
-1.0 -0.5 0.0 0.5 1.0

(a)

200 I I I t i i I

150

IEA 2)I-
z~~M+ 10041me + I, lo -m

50

0 - , , I I I I ' -
0 c

-0.5 0.0 0.5

(b)

Fig. S.S. The ratios (a) JE( 4)IIMIE + r and (b) IE('4 )IlE ,Ie+ Irm of the
magnitudes of the 0- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
TA0o1 wave in the circular cylinder when ka = 2.86 and L3 =

0.5 [T]k29&
01 1] ka=2.95'
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1.0 - I l I l I, l __

(EA2)IIE +O 0.5

0.0- 4€o
-1.0 -0.5 0.0 0.5 1.0

(a)

(b)

Fig. 8.9. The ratios (a)lE( A2)/IE 4 {fI +r, and (b) IE A)/IEF'; I+I _ of the
magnitudes of the €- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
T,' I! wave in the circular cylinder when ka = 2.90 and L3 =

. 0 0ka.2.95
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0.5

0.4

I(EA 2) 0.3

- I 0.2

0.1

0.0 i

-1.0 -0.5 0.0 0.5 1.0

(a)

100 I i I I __

IE A2)I 50

-0.5 0.0 0.5
(b)

Fig. S.10. The ratios (a) IE(A2)/IE ';we+ I , and (b) IE E(AI)I/! rTN r, of the
magnitudes of the €- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
TA! 01 wave in the circular cylinder when ka = 2.95 and L3 =
0_.5 T7Sk.=2.95.
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0.5 - i

0.4

(A) 0.3

0.1

0.0-Y--r7 T7

100- I

IE A2)I 
5

z I I I 

0 C

-0.5 0.0 0.5
(b)

Fig. 8. 11. The ratios (a) I EA)/Ejf+Ii and (b) 1IA.2)/11~ +I, of th
magnitudes of the 0~- and z-directed electric fields in the aperture
A 2 to the root mean square value of the electric field of the incident
TApII wave in the circular cylinder wvhen kcz = 3.00 and L3 =

0~1 ka=2.95.
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0.0-

-1.0 -0.5 0.0 0.5 1.0
(a)

100 I I I I

IE!A2)1
50

0 - I , I I : -

S C

-0.5 0.0 0.5
(b)

Fig. 8.12. The ratios (a) E(A)/ -E + 1,- -and(b) IE / -'-- of the
magnitudes of the 0- and z-directed electric fields in the aperture
A 2 to the root mean square value of the electric field of the incident
TMt0 wave in the circular cylinder when ka = 3.05 and L3 =
0.5 [ 01 ka=2.95.
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Fig. 8.13. The ratios (a) E,(2)/ and (b) EfA/ of the
magnitudes of the 0- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
TA! 0 , wave in the circular cylinder when ka = 3.05-1236 and L 3 =
0"5 rAT ]

0 [AOlJ] ka=2.95"
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the angle 7r - 0 in A2. Furthermore, the z component of the electric field
at the angle 0 in A1 is equal to the z component of the electric field at the
angle r - 0 in A 2.

Note that the values of BKM and XM in (8.19) are larger than those in
(8.16). Larger values of BKM and XM were needed for accurate calculation of
the tangential electric field in A2 than for accurate calculation of P,. Larger
values were needed because the convergence of the electric field in A 2 with
increasing BKM and XM was slower than the convergence of Pt. The electric
field in A 2 converges slowly because its q-component tends toward infinity as
1/(1-(/0.)2),, when q$/0 q approaches ±1 where v = (1-20o/7r)/(3-20,o/r),
and its z-component tends toward infinity as 1/(1 - (2z/c) 2 ),/3 when 2z/c
approaches ±1 [6, page 387].
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Appendix A

Ordering the Expansion
Functions

The expansion function 1_.!,(0, z) for the equivalent magnetic current ML(1)
is, according to [1, eq. (2.13)], defined in terms of emns Here, 6 may be either
TM or TE, eTa is the electric-type mode vector of the T~Im, rectangular
waveguide mode, and !T is the electric-type mode vector of the TEm, rect-
angular waveguide mode. The expansion function A126 (0, z) is, according to
[1, eq. (2.14)], also defined in terms of e!,n.

The expansion functions are arranged in the following order:
1. t,,ugfm I,,..,M( , J LVIuITM2 ,M=1, 2,-..MM(31 ,

{ALZ m', m= 1, 2, .. , MM (4)} ,...

. L M0 m=1,2,. .,MM(1)}, _1 0,1,..- ,MM(2)1,

m2 m =0,1'Mml(3)1

3. {M2T' M = 1,2,...,MM(2)1, .JMT7,r2 1,2,...,MM(3) ,

{-,2TMm3 1, 2,...,IM(4 ..

4. , M. E'l ,M = l -. , M 1) ,,.f.k[, E ,M =0, 1,... M (2)

fffT-. 2 ,= 0,1,'"MINI(3)1,..

As listed above, items 3 and 4 are, respectively, items 1 and 2 with the
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superscript 1 replaced by 2.
The MM's in items 1, 2, 3, and 4 are variables that are calculated in our

computer program. The value of MM (n + 1) is determined in the followingITff.lf[ 11TE fj2T.A1

manner. The sequences of expansion functions {_/T.n} {.i,}, {.Xm },

and {M22E} are terminated by requiring that the nonnegative integers m
and n be small enough so that

kmnb < BIKM (A.1)

where kn is the mode cutoff wavenumber given by (2.4), and BKM is, a
specified constant. The parameter BKM is not written with italicized letters
because it is an input variable for our computer program. Substitution of
(2.4) into (A.1) gives

(mr)2 + < BKM. (A.2)

According to (A.2), MMI (n + 1) is the largest integer such that

(MM (n + 1)-) + < BIKM . (A.3)

All values of n so large that no integer MM (n + 1) satisfies (A.3) are disal-
lowed.

If we define IL T'I"N to be the Ith AfTfxI in item I for i = 1,2,.-., then
there will be a pair of integers m and n such that MLITxf - .,[TA Thus,
there will, for the jITM's, be a correspondence between each pair of integers
m and n in use and each single integer i. Replacing m, n, and i by p, q, and
j, respectively, tlere will. for the PIlTM's. be a correspondence between each
pair of integers p and q in use and each single integer j. This is what is
called in the sentence following (2.5) the correspondence between each pair
of integers (p,q) used in [1, eq. (3.44)] and the subscript j in [1. eq. (3.44)].

If we define M1ITE to I e the 1th .[ITE in item 2 for i = 1,2...-. then
there will be a pair of integers m and n such that .ILTE - .1TE.  Thus,
there will, for the MITE's, be a correspondence between each pair of integers
m and n in use and each single integer i. Replacing m. n. and i by p. q,
and j, respectively, there will, for the .1ITE s, e a correspondence between
each pair of integers p -nd q in use and each single integer j. This is what is
called in the sentence following (2.5) the correspondence between each pair
of integers (p,q) used in [1, eq. (3.47)] and the subsc:-pt- J in [1, eq. (3.47)].
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Appendix B

Roots of Bessel Functions and
Their Derivatives

This appendix describes how numerical values of {j, s = 1,2,..., Smax; n =
0, 1,- -. 1 and {I's, s = 1,2,... , Sma; n = 0, 1,. *} are obtained. Here, In is

the sth root of Jn:
J,,(j, ) =0. (B.1)

Furthermore, j. is the sth root of J,:

J,(j 3n) = 0. (B.2)

In (B.1), J, is the Bessel function of the first kind of order n. In (B.2), J:' is
the der: -ative of J, with respect to its argument. Now, the roots {jn,} and
{1,8 } are ordered so that

0 <jo,1 < j1, < jo,2 < J,2 < o, < 30,smar (B.3)

J n,1 < Jn,1 < In,2 < jI,2" < sm, <flSm.x n = 1,** J.
Here, sma, depends on n. Given n, smax is the largest value of s such that

J0, < XM, n=0 B.)

In,"< XNM, n =1,"' J
where XM is not written with italicized letters because it is an input variable
for our computer program. Assuming that XM > J0,1, all values of n so large

a ,,1 > XM are disallowed. In (B.'), XNM is a constant that c'-ntrols the



number of roots that are calculated. If one wants to calculate more roots,
one should choose a larger value of XM.

Our numerical values of {j,s,s = 1,2,.., 49; n = 0,1,-..,19} and
Ins I S = 1,2,...,49; n = 0,1,.- ,19} are taken directly from [5, Tables

1 and 2]. For other values of n and s, we calculate jns and j, by means of
formulas given in [5]. In the body of the present report, the Sth roots of Jn
and J, were called Xrn and x',' to coincide with the notation in [1]. Hqre in
Appendix B, these roots are, more in harmony with the notation in [5], called
i, and j',. However, our notation in Appendix B is slightly different from
that of [5]. Our jn is what Olver calls j,,. Our j' is what Olver callsOur "*,',, for n > I is what Olver calls ",

O 1n . Our "inner fringe" calculated values
of {j2os, 8 = 1, 2,..,50}, {j5o, n - 0,1,2,-,19}, {3 0,, s = 1, 2, 50},
and {J 0 , n = 0, 1,2,..., 19} agree well with the "outer fringe" tabulated
values in [5, Tables 1 and 2]. There is no entry in [5, Table 2] which corre-
sponds to our J0,50 However, according to [3, formula 9.1.28], '150 = ji,s0,

and there is an entry in [5, Table 1] which corresponds to our j 1,50. Although,
as stated earlier in this paragraph, our notation does not normally place a
comma between the subscripts of j and j', we had to use a comma in the
previous two sentences in order to separate the "0" from the "50" and the
"1" from the "50".

B.1 Evaluation of Roots of Bessel Functions
of Large Order

For n > 20 and s > 1, we approximate jns by [5, eq. (9.01)]

Ins = fz + (B.5)
n n3

where z, Pi, and P2 are tabulated functions of -( where

- ( = -n-2/3a,. (B.6)

In (B.6), a, is the sth negative root of the Airy function Ai:

ai(a) =0, s = 1, 2,.. (B. 7)

Here,
0 < -a, < -a 2 < -a 3 < (B.S)
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The roots {a., s = 1,2,...,50} are tabulated [5, Table V, page 78]. For
s > 50 [5, eq. (9.07)],

a= A 2/ 3 1 + 48) (B.9)

where [5, eq. (9.09)],
3ir

A = -- (4s- 1). (B.10)
8

Actually, z, pl, and P2 are tabulated functions of -( only for (0 < -c _ 7.5)
[5, Table IV, pages 72 and 74]. If -( > 7.5, then z - 2/(3$3 ) and P, are
tabulated functions of [5, Table IV, page 74] where

1

- v -
(B .1 1 )

If -( > 7.5, then P2 = 0.
The modified interpolation formula of Everett [5, "q. (9.04)], [7, page 57],

fp= (1 -p)fo + pfI + E 25o + F26 1 + M 4% + N 40j', (B.12)

is used to obtain accurate values of z, Pi, and P2. In (B.12), the f's are vaiues
of the function being interpolated, the 62's are modified second-order differ-
ences, and the 74s are modified fourth-order differences. In particular, fp is
the interpolated value of f at the actual value of the argument; fo, 60, and
y4 are the tabulated values of f, 52, and -f4 at the nearest smaller tabulated

value of the argument; and fl, P1, and -y4 are the tabulated values off, M,
and -y4 at the nearest larger tabulated value of the argument. The argument
is either -( or . Numerically, p is the ratio of the difference between the
actual value and the nearest smaller tabulated value of the argument to the
difference between the nearest larger and nearest smaller tabulated values of
the argument. Thus, the actual value of the argument is a fraction p of the
way from the nearest lower tabulated value to the nearest upper tabulated
value. In (B.12), E2, F2, M4 , and NY are given by [7, pages 56 and 57]

E2 = -p(p- 1)(p- 2 ) (B.13)
6

F2 = (p + 1)p(p- 1) (B.14)
6

A! 4 = IOOOE 2 {(p + 1) (p  3) +0.18} (B.15)
20
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N4 = 1000F 2 {(p + 2)(p -2) (B.16)

B.2 Evaluation of Roots of Derivatives of
Bessel Functions of Large Order

For n > 20 and s > 1, we approximate j' by [5, eq. (9.02)]

qj q2 q3,= nz + - + L (B.17)
n n 3  n 5

where z, qj, q2, and q3 are tabulated functions of -( [5, Table IV, pages
72-75] where

- = -n- 2/3a. (B.18)

In (B.18), a' is the sth negative root of Ai', the derivative of the Airy function
Ai:

Ai'(a') =0, s=l1, 2, -. (B. 19)

Here,
-a' < -a' < -a' < -' (B.20)

The roots {a, s = 1,2,.. ,50} are tabulated [5, Table V, page 78]. For
s > 50 [5, eq. (9.08)], 1 - 2/3 1  7 )

a.= 48t,2 (B.21)

where [5, eq. (9.09)]

= -7r(4s- 3). (B.22)

The tabulation of z was described in the two sentences following (B.10).
Actually, qj, q2, and q3 are tabulated functions of -( only for 0 < ( < 7.5
[5, Table IV, pages 73 and 75]. If -( > 7.5, then q2 = q3 = 0 and q, is
a tabulated function of s [5, Table IV, page 75] where is given by (B.11).
The interpolation formula (B.12) is used to obtain accurate values of z, q1 ,
q2, and q3.
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B.3 Evaluation of Large Roots of Bessel
Functions

For 0 < n < 19 and s > 50, we approximate jn and j by the truncated
McMahon expansions [5, eqs. (1.10) and (1.12)]

4 A 2r- 1 
( . 3

jns= Z-T-r1 (2r - 1)!23r32r-I (B.23)

4/3' A2- (B.24)Ins E - ro (2r- ,1), i
r= (2r - 1)!23T3(r)(.4

In (B.23),

/3= (2n + 4s - 1)' (B.25)
4

and [5, eq. (1.11)]

A, =it- I (B.26)

A 3 = (p - 1)(711 - 31) (B.27)

A5 = 4(p - 1)(83p 2 - 9821t + 3779) (B.28)

A 7 = 6(p - 1)(69491*3 - 153855 A 2 + 15 8 5 743y - 6277237) (B.29)

where
p = 4n2 . (B.30)

In (B.24),
7r

3=(2n + 4s - 3)- (B.31)
4

and [5, eq. (1.13)]

A', = p + 3 (B.32)

A' = 7p 2 + 82,v - 9 (B.33)
A' = 4(83y 3 + 2075/*2 - 3039/1 + 3537) (B.34)

A' = 6(6949P 4 + 296492 ,3 - 1248002y2 + 7414380*t - 5853627) (B.35)

where p is given by (B.30). Expressions (B.23) and (B.24) expand to

• A, A3  1 (A I 1 , (B.36)Is = 8/3 384/33 15360/35 4 3440640/3' (6

Ins 3180' 840 1 .37 (B.37)8/3' -384/3' -()15360 3440640/3'
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Appendix C

The Effect of Loads on the
TMo1 Source in the Circular
Waveguide

In the body of this report, we find the electric fields in the waveguide mode
converter due to the excitation of a unit-amplitude z-traveling T1! 0 1 wave.
The source of this wave is taken to be the electric current source jimp whose
-z-traveling waves see a matched load. Specializing further, we take jimp
to be the transverse electric surface current density located at z = -L 5 that
launches the z-traveling wave whose electromagnetic field is (Efe+ HTA' e' )
in the region for which z > -L 5 . Here,

(TM\20TMe(P O/ - 01 "T

E"e+= ZT Meo Je w(p, O) e-jPojz + k A) 2 I.f 01 01(.- 0 ,+-ja,. (C. 1)

Equation (C.1) was obtained by substituting (6.63) into [1, eq. (B.1)]. The
electric and magnetic fields defined by (C.1) are those of the z-traveling
TM01 mode. We assume that Jimp also launches the -z-traveling wave whose
electromagnetic field is C(_. I-,HlI-)in the region for which z < -L 5 .

Here, C is an unknown constant and
ITMI2 /,TMe(. WWJ __''f

l_.T e- - T eo, e n ',jTM, (k"1 ' P'O W 0"',w

S-(p" i , iJM + uL 01 . (C.2)

Lai &0 (= , ; Oe)e3, mz'
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Equation (C.2) was obtained by substituting (6.63) into [1, eq. (B.2)]. The
electric and magnetic fields defined by (C.2) are those of the -z-traveling
TM01 mode. Requiring the transverse electric field to be continuous at z =

-L5, we obtain C = -e j2 / ML5. (C.3)

The TAll 01 waves radiated by jimP in the circular waveguide are shown in
Fig. C.1 where "1" is the coefficient of the z-traveling TM01 mode in the
region for which -L 5 < z < -c/2. "F" is the coefficient of the -z-traveling
TM0 1 mode in the region for which -L 5 < z < -c/2. "C + F" is the
coefficient of the -z-traveling TA'ol mode in the region for which -oc < z <
-L 5 . The TA! 01 waves shown in Fig. C.1 are those dealt with in the body of
this report. Thus, from (6.75), we have

r = -rcT -feej2OL3. (c.4)

Here, F is a reflection coefficient because -y is the ratio of the coefficient of the
-z-traveling mode field (C.2) to the coefficient of the z-traveling mode field
(C.1) in the region for which -L 5 < z < -c/2. Since the magnetic fields of
the mode fields are h o' (p, O)eF-I 61 z rather than ±hT' (p, )eTJ- ", 61 is
a reflection coefficient for the current rather than for the voltage.

The loads mentioned in the title of this appendix are taken to be the
TA! 01 loads ZL4 at z = -L 4 and ZL6 at z = -L 6. See Fig. C.2. A T.! 01 load
is a load that acts on the voltage and current of only the TA!01 waves. When
the loads ZL4 and ZL6 are in place, the TA! 01 electric and magnetic fields E
and H in the circular waveguide are, as indicated in Fig. C.2, assumed to be
given by

C + p TMe+ Ae

4 + C-EoH = - + 4 C= j-  
- L4 < z- < L5 (C.5)

E C+ Te+ + c---'T e-

-5- =+I--e - L 5 < z < -L 6  (C.6)
E = C:/ lfe+ + C TE-! -  c

E ,-+E , fe++ jETeC

H = G+T+ C-HTMe- - L 6 < z < -(C.7)

6 A--01
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C r " tjimp

1r 4-F

I i I

toz=-oo -Lc 0 c

2 2
z -

Fig. C.1. The TMo waves radiated by j1 mp in the circular waveguide.
The situation in Fig. C.1 is the same as that in the body of
this report. There are no additional loads.

FL47- ZL6
,4 C + j C5 ) C6"

II I I
c c-L4 -Ls -L6 - 0 - L3

Z --

Fig. C.2. The TIVo, waves radiated by EimP when the additional loads

ZL, and ZL6 are present in the circular waveguide.
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where the C's are unknown constants.
The effect of the loads ZL4 and ZL6 is to change the electric field inci-

dent on the aperture-perforated section of circular waveguide from E_TMe+

in Fig. C.1 to C+E T'e+ in Fig. C.2. Viewing this incident electric field as
the excitation of the aperture-perforated section of circular waveguide, we
deduce that the fields in this section of waveguide in Fig. C.2 are those in
Fig. C.1 multiplied by C+ .Therefore,

C- = rC+ .  (C.8)

Equation (C.8) is one simultaneous equation in the variables C+ , CZ-, C+,
C5', C6, and Cj'. In the following five paragraphs, we obtain five more
simultaneous equations in these six variables.

Because the waves launched by J"'P in Fig. C.2 are the same as those in
Fig. C.1, we have

C =C c + 1 (C.9)

C- = C5 + C. (C.10)

Recall that the loads ZL4 and ZL6 act on the voltages and currents of the
TMI0 waves. These voltages and currents are called the TMo, voltages and
currents. Seeking to define the TMol voltages and currents, we substitute
(C.1) and (C.2) into (C.5)-(C.7) and take only the transverse part of E,
which is called E,:

E= (C4+e~oM, - PT' C M z) ZTMeoJTme (~H, (C 01oM, Czjo,")TM ) p,$o , ) -L 4 <z < -L 5 (C.11)

LE= (C4e~ M  4 C ~Z) A01oJ (p ,}- < - 6 (.2
H = (C:e-L.-M + Cejo. z) TAle(p. e) (M = (c: . , M  - C -e-;,) ZTNI T"/0 - L5 < z < -L6 (C.12)

01 01 zTee~(p,
C6, 6 01 . " - c o,) ,,, ,,,

g (C ejo Mz C e Z) lT (p,-- L6 < Z < - . (C.13)H (C6+ 0p, +) -60

The TMo0 voltages are defined to be the coefficients of .e(p, €) in (C.11)-
(C.13). The TA1 01 currents are defined to be the coefficients of ~W'(p, 0) in
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(C.11)-(C.13). Viewing Fig. C.2 as a circuit, the TM01 voltage is the voltage
of the upper line with respect to the lower one, and the TMo1 current is the
z-directed electric current on the upper line.

The presence of ZL4 at z = -L 4 requires that

where V is the TM01 voltage and I is the TM01 current. The subscript
"z = -L +" denotes the limit as z approaches -L 4 from above. "From
above" means through values which are greater than -L 4. Extracting V and
I from (C.11) and substituting them into (C.14), we obtain

C + e j l 4 - 5 4 ZL4

C+ej'14 + CZe- ZT Me (C.15)

where
14 = qTAI L 4 .  (C.16)

Solving (C.15) for C+ in terms of CZ, we arrive at

C+ = F4C" (C.17)

where

4 ZTIMe° - ZL4 e-j214 (C.18)
Z'o1e o + ZL4

Since there is no series load at z = -L 6,

[V]=_L- = (VIz=_L+ (C.19)

where the subscript "z = -L6" denotes the the limit as z approaches -L6
from below and "z = -L" denotes the limit as z approaches -L 6 from
above. Extracting the V's from (C.12) and (C.13) and substituting them
into (C.19), we obtain

- C - 6 =C6 - C0e -l (C.20)

where
16 = 301

M L6. (C.21)
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At z = -L 6 , the TM 01 current V/ZL6 flows from the upper terminal of ZL6

to its lower terminal so that
1

[Iz=-L; - L[V]z=L- + [Ilz=L+. (C.22)

Extracting V and I from (C.12) and (C.13) and substituting them into

(C.22), we obtain

C+eJ 6 + Ce - j36 = C+e
jl6 + C± - + C+ejl6 - Ce-j6 (C.23)

z

where

Z- ZL6 (C.24)

Equation (C.23) becomes
C+(l - Z)ej'6 - C-(l + + C+Zej 16 + C;Ze- JI6 = 0. (C.25)

Equations (C.17), (C.10), (C.9), (C.20), (C.25), and (C.8), ordered as

cited, are written in matrix form as

1 -r 4  0 0 0 0 C4+

0 1 0 -1 0 0 C4

-1 0 1 0 0 0 5

0 0 ejI6  CA ej'6  -e-- 6 CS
0 0 (1 - Z)ejl. -(1 + Z)e-j'6 Ze16 Ze-j' C6+

0 0 0 0 -r 1 .C;

0
C

0 (C.26)

0
0J

We proceed to solve the matrix equation (C.26) for C + , C-, C+, C-, C+ ,

and C;.
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Adding the first row of (C.26) and the product of 1"4 with the second row
to the third row, we obtain, in view of (C.3),

1 -r4 0 0 0 0] C+

0 1 0 -1 0 0 C4

0 0 1 -F 4  0 0 5

0 0 -e e- jr6  ej6 -e -j16 C5 =
0 0 (1 - Z)e j 6 -(1 + Z)e - 1 6 Zej'6 Ze - 'J C +

00 0 0 -r L C. J

0
C
D
0 (C.27)

0
0

where
D = 1 - F4ei2 M L .  (C.28)

The last four rows of (C.27) are

1 - 0 0 C+  D
-e jI6  e-j'6  ej16 - -CA C5 0 I

(I - Z)ej'6 -(1 + Z)e - j16 Ze 16 Ze -
l6 C 6J 0 (C.29)

0 0 -F 1 Cj 0

Adding the product of ej16 with the first row to the second row of (C.29) and
adding the product of -(1 - Z)e j l6 with the first row to the third row, we
obtain

1 -F 4  0 0 C+

0 e - F4 eiI6 e
j

16 -e-j16 C5
0 -(1 + Z)e-j1 6 + (1 - Z)r 4ej'6 Ze j '6 Ze -j16 C J+

0 0 -F 1 C;

D
De J'-

-(I - Z)DeJ' 6  (C30)
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Discarding the first row of (C.30) and multiplying the second and third rows
by e- j 6, we obtain

e [ 4 1 eJ I I-(1 + Z)e + (1- Z)F4  Z Ze - j 26 C+  =

-(1 -Z)D ] (C31)
0

Adding the product of the first row with { (1 + Z)e -2 6 - (1 - Z)4/{e

F 4} to the second row of (C.31), we obtain

, - j 2tr - r 4  1 - j C 5

(1 + 2Z)e - j 216 - r4 -e - j 4 1
6 - (2Z - 1)r 4 e - j 2 6 +

e-j 216 - r4 e-j216 4 C"4

0 -F 1 C-6

D

2ZDe-J 2 6 (C.32)
e - j 2 6 - r4

0

Discarding the first row of (C.32) and multiplying the second row by e - j 216 -

['4, we obtain[(1 + 2Z)e-2 1 6 - 174 -e-~r (2Z - 1)174Cjl C6 ]

[2ZDe-2l6 1

1 (C.:33)

Adding the product of the first row of (C.33) with F/{(1 + 2Z)e - j '16 - F4}

to the second row, we obtain

1 (e "- j 4
16 + (2Z - 1)4e-j216) C- 2ZDFe-j2 l, (C.34)

(1 + 2Z)e--2 l6 - F4 = (1 + 2Z)e-j 2 16 -
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Solving (C.34) for C6-, we obtain

C - 2ZD (C.35)

'A

where
A = 1 + 2Z - (2Z - 1)FF 4 - rF4e j 2l6 - Fe - j 2

16. (C.36)

Substitution of (C.35) into the second row of (C.33) gives

2ZD
C -A ' (C.37)

Substituting (C.35) and (C.36) into the first row of (C.32) and solving for
C5 , we arrive at

5 {(2Z - 1)F + eJ216}D (C.38)
A

Substitution of (C.38) into the first row of (C.30) gives

C5+  {2Z + 1 - r-j D(C39)A

Next, CZ- is given by (C.10). Finally, C+ is given by (C.17). It can be verified
that the C's given by (C.35), (C.37), (C.38), (C.39), (C.10), and (C.17) do
indeed satisfy (C.26).
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